

Thales Levi Azevedo Valente

Method for Automatic Detection of Stamps in Scanned
Documents Using Deep Learning and Synthetic Data

Generation by Instance Augmentation

Tese de Doutorado

Thesis presented to the Programa de Pós-Graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Doutor em Ciências - Informática

Advisor: Prof. Marcelo Gattass
Co-advisor: Dr. Paulo Ivson Netto Santos

Rio de Janeiro
March 2022

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

Thales Levi Azevedo Valente

Method for Automatic Detection of Stamps in Scanned
Documents Using Deep Learning and Synthetic Data

Generation by Instance Augmentation

Thesis presented to the Programa de Pós-Graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Doutor em Ciências – Informática. Approved by
the Examination Committee:

Prof. Marcelo Gattass
Advisor

Departamento de Informática – PUC-Rio

Dr. Paulo Ivson Netto Santos
Co-Advisor

Tecgraf – PUC-Rio

Prof. Karla Tereza Figueiredo Leite
UERJ

Prof. Geraldo Braz Junior
UFMA

Prof. Alberto Barbosa Raposo
Departamento de Informática – PUC-Rio

Prof. Waldemar Celes Filho
Departamento de Informática – PUC-Rio

Rio de Janeiro, March 17th, 2022

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

All rights reserved.

Thales Levi Azevedo Valente

Graduated in Computer Science from Universidade Federal do

Maranhão – UFMA in 2015, he obtained the degree of Mestre at

Universidade Federal do Maranhão – UFMA in Electrical

Engineering in 2017

Bibliographic data

CDD:004

Valente, Thales Levi Azevedo

 Method for automatic detection of stamps in scanned

documents using deep learning and synthetic data generation

by instance augmentation / Thales Levi Azevedo Valente ;

advisor: Marcelo Gattass ; co-advisor: Paulo Ivson Netto

Santos. – 2022.

 101 f. : il. color. ; 30 cm

 Tese (doutorado)–Pontifícia Universidade Católica do Rio

de Janeiro, Departamento de Informática, 2022.

 Inclui bibliografia

 1. Informática – Teses. 2. Detecção de carimbos. 3.

Aprendizagem profunda. 4. Faster R-CNN. 5. Documentos

digitalizados. 6. Aumento de instâncias. I. Gattass, Marcelo. II.

Santos, Paulo Ivson Netto. III. Pontifícia Universidade Católica

do Rio de Janeiro. Departamento de Informática. IV. Título.

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

Acknowledgments

My Family, for all the support you have given to me. They provided all the

necessary structures to move forward, even during diversities. In special, to my

parents Aquiles and Leonilde Valente, and to my brothers Thalita and Thiago

Valente.

I want to thank my advisor, Prof. Marcelo Gattass, and co-advisor, Prof. Paulo

Ivson, for supporting my Ph.D. study and related research and giving me the

teachings and opportunities.

I want to thank my committee members, Prof. Karla Tereza Figueiredo Leite, Prof.

Geraldo Braz Junior, Prof. Alberto Barbosa Raposo, and Prof. Waldemar Celes

Filho, for their insightful comments and suggestions. Thanks to their kindness and

sincere interest in my research, my defense was an enjoyable moment that I will not

forget.

I want to thank my friend Pedro Bandeira for the discussions and essential support

in several moments, the sleepless nights we were working together before

deadlines, and all the fun we have had in the last years. To my friends Romeu de

Oliveira and Eduardo Reis for following me closely for most of this journey. To

Lillian Garcês because she actively showed me that she was cheering for me at

various times.

I want to thank PUC-Rio. Especially to the professors in which I participated in the

disciplines. To my Tecgraf colleagues and classmates. To the members of the

Informatics Department, in special to Cosme. And to my other research colleagues.

Finally, I would like to thank Tecgraf/PUC-Rio, Capes, and CNPQ for their

financial support.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de

Nível Superior -Brasil (CAPES) - Finance Code 001.

Thanks for everyone's contribution. I'm very grateful for everything.

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

Abstract

Valente, Thales Levi Azevedo; Gattass, Marcelo (Advisor). Santos, Paulo

Ivson Netto Method for Automatic Detection of Stamps in Scanned

Documents Using Deep Learning and Synthetic Data Generation by

Instance Augmentation. Rio de Janeiro, 2022. 101p. Tese de Doutorado -

Departamento de Informática, Pontifícia Universidade Católica do Rio de

Janeiro.

Scanned documents in business environments have replaced large volumes

of papers. Authorized professionals use stamps to certify critical information in

these documents. Many companies need to verify the adequate stamping of

incoming and outgoing documents. In most inspection situations, people perform a

visual inspection to identify stamps. Therefore, manual stamp checking is tiring,

susceptible to errors, and inefficient in terms of time spent and expected results.

Errors in manual checking for stamps can lead to fines from regulatory bodies,

interruption of operations, and even compromise workflows and financial

transactions. This work proposes two methods that combined can address this

problem, by fully automating stamp detection in real-world scanned documents.

The developed methods can handle datasets containing many small sample-sized

types of stamps, multiples overlaps, different combinations per page, and missing

data. The first method proposes a deep network architecture designed from the

relationship between the problems identified in real-world stamps and the

challenges and solutions of the object detection task pointed out in the literature.

The second method proposes a novel instance augmentation pipeline of stamp

datasets from real data to investigate whether it is possible to detect stamp types

with insufficient samples. We evaluate the hyperparameters of the instance

augmentation approach and the obtained results through a Deep Explainability

method. We achieve state-of-the-art results for the stamp detection task by

successfully combining these two methods, achieving 97.3% of precision and

93.2% of recall.

Keywords

Stamp Detection; Deep Learning; Faster R-CNN; Scanned Documents; Instance

Augmentation.

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

Resumo
Valente, Thales Levi Azevedo; Gattass, Marcelo (Advisor). Santos, Paulo

Ivson Netto Método para Detecção Automática de Carimbos em

Documentos Escaneados Usando Deep Learning e Geração de Dados

Sintéticos Através de Instance Augmentation. Rio de Janeiro, 2022.

101p. Tese de Doutorado - Departamento de Informática, Pontifícia

Universidade Católica do Rio de Janeiro.

Documentos digitalizados em ambientes de negócios substituíram grandes

volumes de papéis. Profissionais autorizados usam carimbos para certificar

informações críticas nesses documentos. Muitas empresas precisam verificar o

carimbo adequado de documentos de entrada e saída. Na maioria das situações de

inspeção, as pessoas realizam inspeção visual para identificar carimbos. Assim

sendo, a verificação manual de carimbos é cansativa, suscetível a erros e ineficiente

em termos de tempo gasto e resultados esperados. Erros na verificação manual de

carimbos podem gerar multas de órgãos reguladores, interrupção de operações e até

mesmo comprometer fluxos de trabalho e transações financeiras. Este trabalho

propõe dois métodos que combinados podem resolver esse problema,

automatizando totalmente a detecção de carimbos em documentos digitalizados do

mundo real. Os métodos desenvolvidos podem lidar com conjuntos de dados

contendo muitos tipos de carimbos de tamanho de amostra pequena, com múltiplas

sobreposições, combinações diferentes por página e dados ausentes. O primeiro

método propõe uma arquitetura de rede profunda projetada a partir da relação entre

os problemas identificados em carimbos do mundo real e os desafios e soluções da

tarefa de detecção de objetos apontados na literatura. O segundo método propõe um

novo pipeline de aumento de instâncias de conjuntos de dados de carimbos a partir

de dados reais e investiga se é possível detectar tipos de carimbos com amostras

insuficientes. Este trabalho avalia os hiperparâmetros da abordagem de aumento de

instâncias e os resultados obtidos usando um método Deep Explainability. Foram

alcançados resultados de última geração para a tarefa de detecção de carimbos

combinando com sucesso esses dois métodos, alcançando 97.3% de precisão e

93.2% de recall.

Palavras-chaves
Detecção de Carimbos; Aprendizagem Profunda; Faster R-CNN;

Documentos Digitalizados; Aumento de Instâncias

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

Table of Contents

1. Introduction ... 14

1.1. Objective...16

1.1.1. General Objective..17

1.1.2. Specific Objectives..17

1.2. Contributions...17

1.3. Work Organization..18

2. Related Works ... 20

2.1. Stamp Detection...20

2.2. Logo Detection..21

2.3. FPN and Deformable Modules..22

2.4. Conclusions Obtained from Related Works................................22

3. Theoretical Background .. 24

3.1. Review of Detection and Classification Deep Networks……......24

3.1.1. Multi-Layer Perceptron..24

3.1.2. Traditional and Deformable Convolution Networks……...…25

3.1.3. Residual Networks...28

3.1.4. Feature Pyramid Networks..29

3.1.5. Faster R-CNN..29

3.1.6. Knowledge Transfer...34

3.2. Deep Explainability...35

3.3. Image Processing Operations...38

3.3.1. Thresholding..38

3.3.2. Mathematical Morphology..39

3.3.3. Image Rotation..40

4. Materials and Methods .. 42

4.1. Development and Experimental Setup.......................................42

4.2. Software for Annotation Process..43

4.3. Method Proposed for Stamp Detection.......................................46

4.3.1. Image Acquisition..46

4.3.2. Preprocessing and Splitting...46

4.3.3. Network Design...48

4.3.4. Evaluation..52

4.3.5. Experiments...53

4.4. Method Proposed for Stamp Instance Augmentation.................56

4.4.1. Instance Augmentation Procedure......................................58

4.4.2. Experiments...60

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

5. Results .. 62

5.1. Stamp Detection...62

5.2. Instance Augmentation...67

6. Discussion ... 70

6.1. Stamp Detection...70

6.2. Instance Augmentation...73

6.3. Comparison with Related Works...75

7. Conclusion .. 77

References ... 78

Appendix 1 ... 85

1. Supervised Training .. 85

1.1. LinearRegression...85

1.1.1. Univariate Linear Regression..86

1.1.2. Multivariate Linear Regression..88

1.2. Classification..88

1.3. Train, Validating and Test Sets..89

1.4. Error Analysis..90

2. Artificial Neural Networks .. 91

2.1. Introduction..91

2.2. Activation Function..92

2.3. Loss Function..94

2.4. Hyperparameters Tuning...96

 Learning rate..96

 Momentum...97

 Regularization..97

2.4.1. Batch Normalization...98

Appendix 2 ... 100

1. Extra Experiments ... 100

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

List of Figures

Figure 1: Architectural graph of an MLP. .. 25

Figure 2: Convolution layer illustration. Source: [38]. 26

Figure 3: Deformable convolution layer illustration. Adapted from [15]. ... 27

Figure 4: Residual learning: a building block. Source: [42]. 28

Figure 5: Schematic of the architecture from feature pyramid network

(FPN). Adapted from: [15]. .. 29

Figure 6: Schematic of the architecture from Faster R-CNN. 30

Figure 7: Relative encoding of the proposal. .. 31

Figure 8: Illustration of RPN anchors parametrizations. 31

Figure 9: RPN general architecture. ... 32

Figure 10: The main screen of the software developed for dataset

annotation. .. 43

Figure 11: Illustration of the most frequent stamp types highlighted in

screen 2 (on the right). The stamp segmented and the stamp selected

in the gallery are shown for visual comparison before saving the data

(on the screen left). ... 45

Figure 12: Search screen illustration. ... 45

Figure 13: Flowchart of each main phases and its respective steps of the

data preparation. ... 47

Figure 14: Method proposed for dataset analysis. The qualitative analysis

step serves as a guide for choosing network architecture. 49

Figure 15: Proposed network architecture designed using our qualitative

analysis. .. 51

Figure 16: Graphic produced on the Tensorboard for the AP50 metric

obtained from the application of the network on validation set. (a)

Experiment shows best value on epoch 1800. (b). Experiment shows

best value on epoch 4100. .. 56

Figure 17: Proposed method for Stamps Instance Augmentation. 58

Figure 18: Illustration of the distribution of the draw of angles for 1000

attempts. ... 60

Figure 19: 3D visualization illustrating the four instances selected (on

yellow color) for the Instance Augmentation experiments. 61

Figure 20: Results for the AP50 metric in the 1699 epoch based on

validation for 7 experiments with several Instance Augmentation

settings. The epoch is highlighted in the chart. 62

Figure 21: Loss curves about the training base and the validation base for

six different experiments using the proposed architecture. 64

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

Figure 22: Illustration in a 3D graph the distribution of test set instances.

Instances represented by a red circle belong to classes absent from

the training group, and instances represented by a blue square

belong to classes present in the training group. 66

Figure 23: Illustration of the reduced characteristics of detected and

undetected instances plotted on a three-dimensional graph. In blue,

the instances detected by the network. Undetected instances are red,

and instances selected for synthetic data generation experiments are

yellow. ... 67

Figure 24: (a) Location of selected stamp instance. (b) Stamp not detected

after generating two clean instances per page. (c) Stamp detected

after generating 12 clean instances per page. (d) Stamp not detected

after generating 12 instances, no cleaning, per page. 68

Figure 25: Single instance not detected by the network after generating

synthetic data of selected stamps. .. 69

Figure 26: First point of view of case studies of the application of the

neural network for stamp detection, where we highlight cases of

success within the context of some simple (shape, intra-similarity,

location, multiplicity) and complex (overlap/occlusion, quality, and

rotation) features in the dataset. .. 70

Figure 27: Second point of view of case studies of the neural network

application for stamp detection, where we highlight divergences

between the thresholds applied in the test group. Cases (a) and (b)

consider scores above 90% and cases (c) and (d) consider scores

above 70%. ... 71

Figure 28: Second point of view of case studies of the application of the

neural network for stamp detection, where we highlight cases of types

in which the network had difficulties in detecting stamps 72

Figure 29: Example of a dataset with Heteroskedasticity. Adapted from:

[70]. ... 86

Figure 30: Model of an artificial neuron. ... 91

Figure 31: Illustration of bias modifying a potential neuron activation by an

affine transformation. ... 92

Figure 32: (a) Identity activation function. (b) Sigmoid activation function.

(c) Relu activation function. ... 93

Figure 33: (a) Identity activation function. (b) Sigmoid activation function.

(c) Relu activation function. ... 94

Figure 34: Cross entropy conditions. (a) tn = 1. (b) tn = 0....................... 95

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

List of Tables

Table 1: Main parameters tested in the experiments. 54

Table 2: Distribution of training, validation, and test sets. 63

Table 3: COCO evaluation metrics and Af-score achieved by the best

model from experiment. ... 64

Table 4: Precision and recall values achieved using several thresholds for

the IOU and score measures. We highlight the two best configurations

used. ... 65

Table 5: Values achieved for f-score metric using several thresholds for

the IOU and score measures. We highlight the two best configurations

used. ... 65

Table 6: Results in detecting instances of test group stamps, which belong

to types present and absent in the training group. 66

Table 7: Results in the detection of stamp types from the test group, and

which belong to types present and absent in the training group 66

Table 8: Comparison between the previous and new the results achieved

for validation and test sets using the proposed method for Instance

Augmentation. ... 69

Table 9: Network confidence in detecting each instance of the type stamp

that the network failed in detection. ... 74

Table 10: Precision and recall values achieved after applying the data

augmentation proposed method. ... 76

Table 11: Comparison of the results for stamps dectection using different

network architectures and cost functions from extra experiments. .. 101

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

List of acronyms

AP - Average Precision

AR - Average Recall

CNN - Convolutional Neural Network

DCN – Deformable Convolutional Network

DPI - dots per inch

Faster R-CNN - Faster Region-Based Convolutional Neural Network

Fast R-CNN - Fast Region-Based Convolutional Neural Network

FC- Fully-Connected

FP - False positive

FPN – Feature Pyramid Network

FN - False Negative

GUI – Graphical User Interface

IOU - Intersection over union

MLP - Multilayer Perceptron

MBSGD – Mini-batch stochastic gradient descent

Resnet - Residual Network

ROI - Region of Interest

RPN - Region Proposal Network

SVM - Support Vector Machine

TN - True negative

TP - True positive

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

“So do not throw away your confidence; it will be

richly rewarded”

Hebrews 10:35

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

1. Introduction

Several sectors of society use stamps to authenticate documents, such as

security, industrial, governmental, educational institutions, medical prescriptions,

sales, bank checks, and postal mail [1-6]. The entities issue their documents through

printing on solid paper, and stamps guarantee the authenticity of the content [1].

Nevertheless, it has been a common practice for these entities to migrate to

paperless offices by digitizing documents, storing and maintaining them in large

databases [2]. With digitization, institutions preserve their physical documents and

provide information access, retrieval, and indexing services, including content

extracted from stamps [1, 2, 7].

Stamps combine textual and graphical components [2-3]. Text components

provide information such as location or who validated information. Graphic

components are geometric shapes that usually vary depending on the type of stamp.

Stamps can contain variable fields to manually fill in dynamic information, such as

dates or signatures, and serve to authenticate the identity of an authorized

professional or an organization [5]. Stamped official documents are often accepted

without question, and the owner cannot deny the legal effects stated in the paper [5,

8].

In most situations, people use their own eyes to identify stamps [4, 8]. The

manual stamping checking is tiring, susceptible to errors, and inefficient time spent

and expected results. Furthermore, some processes can take place in parallel and

involve hundreds/thousands of pages that are immediately scanned. Errors in

manual checking can lead to fines from regulatory bodies, interruption of

operations, or even compromise of workflows and financial transactions. Often,

there is no time or resources to perform manual, even predictive, checking [1].

Automatic stamp detection can reduce labor costs and alleviate all these presented

problems.

The literature presents several challenges to be overcome to perform

automatic stamp detection. Stamps can have arbitrary orientation and any position

within a page, which requires detection throughout the entire image [2-3, 5]. Stamps

may have missing parts or overlapping areas with other elements on the page (text,

manuscripts, or even other stamps) [1-2]. Stamps contain unpredictable patterns

due to poor ink conditions, uneven surface contact, noise, or characteristics of the

page itself [1-2, 4]. Thus, two impressions of the same stamp can look significantly

different [5, 7]. Types of stamps can vary in color, shape, aspect ratio, size.

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

15

For the past several years, object detectors based on Convolutional Neural

Networks (CNN) have shown great results. The definition of the object-detection

problem is to determine the location of the object in a given image (object location)

and to which category each object belongs (object classification) [8]. Therefore, the

stamp detection task can be reduced to the object detection task. So far, surveys

found in the literature point to 2 main types of object detectors [9–12]. One-stage

detectors give up accuracy to the detriment of lower consumption of computational

resources. On the other way, two-stage detectors usually achieve better evaluation

metrics, but require more computational power.

Several techniques have been inserted into object-detection frameworks to

reduce or even solve the effects of the challenges of this task. Dai et al. [12]

developed the DCN (Deformable Convolutional Network), in which they improved

convolutional networks by introducing the operations of deformable pooling and

convolutions. These techniques increase the convolutional kernels' receptive field

sampling and pooling operation through additional offsets automatically learned

from the target task. Although this technique improves the object pose robustness,

point of view, non-rigid deformations, occlusion, and overlapping [12-13], we

found few works that explored this [8, 14–18].

Another module not much explored in the literature on object detection tasks

is the Feature Pyramid Networks (FPN) [18]. FPN produces and combines feature

maps at different hierarchical levels and spatial resolutions in-network. In other

words, this module creates a rich semantic pyramid, with features at various scales

and hierarchical levels, from a single input image scale and a single convolutional

backbone. Thus, this technique circumvents the bias of high computational power

in multi-scale image analysis, since at first, each image scale would have to be

processed by the neural architecture backbone, increasing resource consumption.

The literature highlights that FPN handles problems involving multi-scale, small

objects or objects of varying sizes as well [12, 19].

Despite the improvements in neural networks and the application of

knowledge transfer techniques from pre-trained weights, the lack of representative

data is still a problem that negatively affects many researchers that use deep

learning [12, 20]. A solution found in the literature is the data augmentation of

images. However, Ribani & Marengoni [20] point out that although several

promising image augmentation techniques have been developed in the literature,

increasing data with very low representativeness can lead to overfitting. They also

point out that randomly increasing data can intensify intrinsic imbalance and that

defining which amounts are satisfactory is a challenge.

Recently, instance augmentation research has been developed as another

tool to address the lack of data [22-23]. Instance augmentation consists of

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

16

synthetically generating data from instances of objects of interest and real images.

Changes that occur locally are new instances of the objects, which are “pasted” at

the pixel level. Thus, instance augmentation provides a greater degree of fidelity at

the global and local levels of the data. Instance augmentation can be wholly targeted

to specific types of instances, taking new training data from a few images to a

combinatorial level. In other words, with a single image containing a single object,

it is possible to generate N new objects in a training image using instance

segmentation. On the other hand, to create N objects with data augmentation,

generating N images and changing the entire image is necessary.

In addition to a reasonable amount of data, computational power is another

prerequisite for developing solutions based on deep learning. The available

resources and the number of experiments directly affect the time needed to develop

a solution. Nevertheless, Deep learning experiments usually have a high

computational and time cost. In this sense, a concrete way to assess how a model

can be improved or what effects additional training data would have been to use

Deep Explainability techniques. Deep Explainability can improve debugging

processes of models by using tools to recognize and understand failure cases or

emphasize discovering problems that limit learning and inferring networks [23].

For example, visualization techniques in the space of features can help gain insights

into changes in the model's behavior and how its predictions are affected in

developing and testing a solution [24]. In this research, we use Deep Explainability

to guide the performance of experiments using instance augmentation.

Some state-of-the-art works found in the literature use FPN and DCN for

detection tasks in different domains [8,14-15,17]. However, these jobs typically

perform extensive testing to find the most suitable architecture, do not analyze

failure cases, and do not exploit data augmentation. This research designs and

develops a deep learning-based solution for stamp detection that uses FPN and

DCN based on the characteristics of the data used. Model failure cases can be

evaluated using visualization techniques from Deep Explainability. This

assessment guides a proposed solution to work around the previously observed

failure cases based on instance augmentation. The research was successful in all

these steps, and the lessons learned and presented can be used in other object

detection problems.

1.1. Objective

This section presents the general and specific objectives to be achieved

during the development of this work.

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

17

1.1.1. General Objective

The general objective of this work is to present a new computational method

for the automatic detection of stamps in images of digitized documents, investigate

which types of stamps are more difficult in detecting and propose a new method for

data augmentation to solve the most difficult cases found.

1.1.2. Specific Objectives

To achieve the intended general objective, it was necessary to fulfill the

following specific objectives:

• Design the network architecture based on the advances found in the

Deep Learning and Object Detection literature, but taking into

account the limitations of computational resources and time to run the

experiments;

• Conduct experiments on the defined architecture evaluating the model

through evaluation metrics commonly used in the literature;

• Investigate which types of stamps the final model had more difficulty

detecting through a Deep Explainability method.

• Design and apply an instance augmentation algorithm over the types

of stamps selected by the Deep Explainability to generate synthetic

data from real pages and stamps. Also, verify if data augmentation can

help to improve the detection of these types of stamps.

1.2. Contributions

We propose a state-of-the-art computational method capable of fully

automating the detection of stamps in digitized documents, using a convolutional

framework based on two stages for object detection. We also explore the new

version of deformable modules proposed by Zhu et al. [25] and the use of FPN,

modules that, as far as we know, have never been used for the stamp detection task.

Through our method, we design a new neural network oriented to the

difficulties found in stamps detection task problem. The method evaluated 469

stamps distributed in 251 types. We only use 80 types of stamps for training. Still,

we achieved 97.3% precision and 93.2% recall. We showed that our network could

generalize knowledge and detect more than 3x of the types of stamps present in the

training set.

Among other points, this work presents the following contributions:

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

18

• We illustrate a path that replaces the “brute force testing” of

architectures to solve object detection tasks. The network architecture

design is guided by the relationship between the problems identified

in our dataset and the challenges and solutions of the object detection

task pointed out in the literature. With the strategy, we significantly

minimized the amount of extensive testing;

• As far as we know, this work is the first to propose a model combining

Faster Region-Based Convolutional Neural Network (Faster R-CNN),

DCN version 2, Residual Networks (Resnet) as resource extractor

backbone and pyramidal network of features for the stamp detection

task. FPN has been added to Faster R-CNN to use features in the top

layers as well as in the shallow layers for detecting stamps of different

sizes in scanned document images.

• We propose an innovative greedy strategy for data splitting

considering the distribution of stamps and their types globally (across

the dataset) and locally (per document page image), which can also be

helpful for other problems involving detecting multiple object types

in images;

• As far as we know, this work is the first to evaluate results obtained

by the network through a Deep Explainability method that combines

network feature extraction and dimensionality reduction techniques to

generate a 3D visualization;

• We propose a method for instance augmentation of stamp datasets

from real data to investigate whether it is possible to detect stamp

types with insufficient number of samples.

• We achieved state-of-the-art results for the stamp detection task

through the successful combination of: (1) classic and novel Data

Engineering methods, (2) a novel Object Detection method that

combine the recent advances of the Deep Learning literature and (3)

a new Deep Explainability method used to debug the network and

guide the hyperparameters selection.

1.3. Work Organization

In addition to this introductory chapter, there are 6 more chapters, which

complete this thesis and are structured as follows:

Chapter 2 presents work related to the detection of stamps and logos, which

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

19

are similar in nature. This chapter also presents works that involve Object

Detection, FPN networks and deformable networks.

Chapter 3 presents theoretical review underlying this work to familiarize the

reader with the main concepts used to build the method.

Chapter 4 shows all the stages of development of this research, starting with

the acquisition of documents, followed by the method developed to detect stamps

in documents. We describe general information about the dataset, its construction

process, challenges, our data analysis performed to guide the network design, the

greedy strategy proposed for dividing the dataset, the performed experiments and

the evaluation metrics. This chapter also presents the proposed method for

generating synthetic stamp data.

Chapter 5 presents the results achieved by applying the proposed method

our dataset, the discussions, and some case studies of success and failure.

Chapter 6 discusses some case studies of success and failure obtained by the

proposed methods.

In Chapter 7, the conclusions inferred about the methods are presented,

together with the suggested future work to improve the research.

Finally, the Appendix 1 briefly describes the concepts and nomenclature

employed in this work in relation to neural networks and Appendix 2 presents extra

experiments performed in this work.

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

2. Related Works

This chapter presents and briefly describes some of the works found in the

literature related to the task of detecting stamps in documents. Since we found few

works related to the problem of this research, we also investigated some works with

the theme of stamp recognition and logo detection in images to add insights from

these studies. Logos are graphic objects that have many properties in common with

stamps. We also present works that used FPN networks of deformable modules to

solve other tasks and that showed promising results.

2.1. Stamp Detection

Usually, computational techniques aimed at detecting and recognizing

stamps involve two significant areas of computational research: image processing

and machine learning. We can find research involving template matching, image

registration, morphological operations such as skeletonization and thinning of

binary images, invariant transformations based on edges, color space

transformation, hough transform, grouping, connected components, extraction of

geometric features, and classification using Support Vector Machines (SVM) [1–

3, 5, 27].

Chen [26] conducted one of the first survey in stamp recognition. The work

was limited to specific regions of the image and considered only circular and

rectangular shapes, stamps without imperfections, 4 types, and 4 orientations. The

detection step was performed manually. In Nourbakhsh et al. [5] the authors

considered only one stamp class, with specific sizes, dimensions, font, and style,

only 4 specific orientations. Also, they did not consider cases of stamps overlapping

with other stamps. They achieved 82% accuracy when detecting the presence of

stamps in 1,200 images.

Roy et al. [4] the authors considered 12 types of stamps and circular and

rectangular shapes. They did not assess how much they achieved in stamp detection

task, but they did get 92.03% accuracy for the stamp recognition task on 127

documents. Another work of Roy et al. [3] considered 12 types of stamps with

circular or rectangular shapes. The method achieved 92.42% accuracy for

recognizing stamps on 530 documents. The detection step achieved 100% precision

at the cost of a very low recall, i.e., 20%. Their method is based on handcraft low

features.

The authors Micenková & Beusekom [1] evaluated their stamp detection

method at two different image resolutions: 200 and 300 dots per inch (DPI). Its best

result was achieved at 300 DPI: 83.4% recall and 83.8% accuracy on 320 images.

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

21

In this evaluation, they considered a single stamp class, black and without the

presence of overlapping. When considering overlapping cases, his method achieved

69% accuracy and 68% recall on 52 stamps.

Concerning works that used deep learning, in Sharma et al. [2] the authors

evaluated the use of one-stage and two-stage object detection frameworks. For the

first type, they evaluated the application of the Yolov2 network. For the second

type, they evaluated the application of the Faster R-CNN network with three

different backbones (VGG16, VGG_M and ZF), separately. The best result was

using the Faster R-CNN, achieving 89.2% average precision (AP) and 89.6%

accuracy in detecting stamps in 60 test images. In Jun et al. [27] the authors

proposed the use of Fast Region-Based Convolutional Neural Network (Fast R-

CNN) to detect elements in documents. Their method achieved 97% AP metric on

53 pages of documents.

2.2. Logo Detection

Logo detection in real-world scenes has several similarities to the stamp

detection problem. Logos have well-defined geometric shapes, may or may not

have strings, and usually do not have well-defined locations and quantities in the

image. However, logos usually have more textures and colors, and overlapping

between them is rarer since they are usually associated with another object in the

image to which they belong. Nevertheless, some conclusions obtained in this

research can be used for the stamp detection problem.

Palecek [28] applied, in different logo datasets, two-stage object detection

frameworks such as Faster R-CNN and Mask R-CNN, and a one-stage object

detection framework (RetinaNet). Their final evaluation obtained better results

using object detection frameworks based on two stages than frameworks based on

one stage and segmentation networks. Song & Kurniawati [29] also compared the

same types of object detection frameworks (two-stage and one-stage). They also

evaluated a training base composition with only synthetic data, real data, and

synthetic data. The best results were achieved using frameworks based on two

stages in all experiments. Regarding the composition of the training base, the best

result was composed using real and synthetic data.

Bhunia et al. [30] evaluated the application of several deep network

architectures in logo detection such as Yolo, Faster-RCNN, U-Net, SiameseFCN,

CoFCN, SG-One. They observed that traditional frameworks have limited

performance with little data in the training base, even using pre-trained weights,

tending to overfit a few times. From there, they proposed a new architecture based

on multi-scale feature analysis and residual connections, like networks such as FPN

and ResNet. They also evaluated the performance of networks in a more open

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

22

scenario, that is, where the training set and the test set had utterly different samples

and surpassed the results of previous architectures.

Bhunia et al. [30] also evaluated the performance of networks in a more

open scenario, that is, where the training set and the test set had utterly different

samples. Although his method outperforms previous work in this more challenging

scenario, his work achieved 89.2% AP in logo detection. Other limitations pointed

out by the authors were problems with the imbalance between background and

foreground information and detecting small size logos. Guo et al. [31] also had

problems with small size logos in their work, although he achieved better results

after applying data augmentation techniques and Faster R-CNN network

architecture.

2.3. FPN and Deformable Modules

Works that combine FPN with deformable modules are not yet typical in

any field. However, we found some works in different areas that used this

combination. Overall, FPNs bring the advantage of multiscale hierarchical feature

analysis, and deformable modules bring greater robustness to geometric

transformations, overlap, and occlusion.

Ren et al. [13] proposed a method based on Faster R-CNN combining

multiscale feature analysis and deformable modules to perform object detection in

remote sensing optical images and achieved better results than traditional

architectures. Shi et al. [16] evaluated different architectures of deep networks for

detecting marine organisms in videos. The authors concluded that the use of FPN

brings much better results than object detectors that do not use it. They also point

out that DCN has the advantage of making the model invariant to geometric

transformations since the network generalizes the learning about these

transformations based on the data itself.

In their studies, Deng et al. [14] also found better results when combining

FPN with deformable modules in their visual classification task of concrete cracks.

Finally, Han et al. [6] compared one-stage and two-stage-based frameworks and

FPN and DCN to analyze of airport remote sensing images. They got better results

combining a 2-stage framework with FPN and DCN.

2.4. Conclusions obtained from related work

In general, works aimed at detecting stamps are difficult to compare.

Authors usually present the results achieved in metrics but provide what they

achieved in the number of images, not in numbers of stamps. The works usually use

private data and, even in cases where they used the same database, the process of

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

23

dividing the data into training, validation, and testing groups (proportion and

specific instances for each group) are different. We also have examples of works

with minimal scope.

The works focused on the other themes, logo detection and the use of FPN

networks and deformable modules agree with the studies of Zhao et al. [9], Zou et

al. [10] and Liu et al. [12], extensive object detection surveys. Object detection

frameworks usually achieve better metrics, feature analysis at a hierarchical and

multiscale level brings excellent gains, and the use of deformable modules brings

greater robustness when the problem presents overlapping and geometric

variations. Finally, we also verified that the literature points out significant gains in

using synthetic data with real data in the training base

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

3. Theoretical Background

This chapter presents a theoretical review of the main topics related to

artificial neural networks, deep explainability and image processing that are

employed throughout this thesis. Appendix 1 contains an additional overview of

more foundational concepts.

3.1. Review of Detection and Classification Deep Networks

This section introduces the main concepts about neural networks employed

in our framework for stamp detection.

3.1.1. Multi-Layer Perceptron

In multilayer neural networks, the neurons are arranged in a layered fashion,

in which a group of hidden layers separates the input and output layers [32].

Multilayer perceptron (MLP) is a fully connected multilayer neural network in its

general form. A neuron in any network layer connects to all the neurons (nodes) in

the previous layer. Signal flow through the network progresses in a forward

direction, from left to right and on a layer-by-layer basis. The following three points

highlight the basic features of MLP [33]:

• The model of each neuron in the network includes a nonlinear

activation function that is differentiable;

• The network contains one or more layers that are hidden from both

the input and output nodes;

• The network exhibits a high degree of connectivity, which is

determined by the synaptic weights of the network.

The output neurons constitute the output layer of the network. The

remaining neurons constitute hidden layers of the network. Thus, the hidden units

are not part of the output or input of the network—hence their designation as

“hidden.” The first hidden layer is fed from the input layer made up of sensory units

(source nodes); the resulting outputs of the first hidden layer are in turn applied to

the next hidden layer, and so on for the rest of the network [33].

However, if the activation functions of all the hidden units in a network are

linear, then for any such network, we can always find an equivalent network without

hidden units. This follows from the fact that the composition of successive linear

transformations is itself a linear transformation [34]. Equation 1 describes the

output of a layer.

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

25

𝑦𝑙 = 𝜑(𝑊𝑙𝑦𝑙−1 + 𝑏𝑙) (1)

Where 𝑦𝑙 is the output vector, 𝑊𝑙 the weights matrix of each neuron pair of

layer l and l-1, and 𝑏𝑙 the bias term vector of each neuron in layer l. The Figure 1

illustrates an architectural graph of an MLP.

Figure 1: Architectural graph of a MLP.

3.1.2. Traditional and Deformable Convolution Networks

CNN are deep supervised machine learning algorithms. Two significant

advantages can be highlighted from this deep network model: (1) excellent learning

capacity, that is, making strong and mainly correct assumptions about the nature of

the data and (2) being easy to train compared to neural networks with a similar

number of layers [35]. CNN are applied in many problems, including extensive data

analysis, computer vision and image analysis, speech recognition, natural language

processing, and recommendation systems.

CNN forgoes designing and extracting a handcrafted set of features and,

instead, feeds data directly into the network. These networks mainly consist of

many convolutional layers, interspersed with pooling layers that reduce the

dimensionality of the input signal, and usually a few fully connected layers and a

final classification layer. The convolutional layers can be thought of as a feature

extraction subsystem, not designed or selected by algorithm developers but learned

explicitly for the task at hand during the training process [36].

Neurons that belong to the convolutional and completely connected layers

are often combined with a bias and an activation function. The activation function

of the neurons presented at the end of the completely connected layer can vary

according to the type of problem in which the network is applied. However, the relu

is the most used activation function in hidden layers since Krizhevsky et al. [35]

proved that its mathematical simplicity allows the stochastic gradient descent to

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

26

converge up to 6 times faster compared to the sigmoid and tanh functions.

Each convolutional layer consists of groups of 1D (for signals or sequences),

2D (for images or spectrograms), or 3D (for videos or volumetric images) neurons

called kernels. Sets of kernels in the convolutional kernel form filters, which extract

characteristics whose internal values are adjustable synaptic weights. In other

words, the convolutional filters are trainable features extractors. Signal units that

pass from one layer to another are organized on feature maps.

The filters define a small area (3x3, 5x5, 7x7 pixels). Each unit is connected

to local patches in feature maps of the previous layer through the convolutional

filters and is then passed through a nonlinearity (activation function). All units in a

feature map share the same convolutional filter, and different feature maps in a layer

use different convolutional filters. The shared filters reduce the number of

connections, reducing training time and chances of overfitting. These factors speed

up the learning and reduce the memory requirements for the network. Figure 2

illustrates how convolution occurs in an image.

DCNs are designed to handle critical challenges in visual recognition as

geometric variations or model geometric transformations in object scale, pose,

viewpoint, and part deformation [12]. By adding 2D offsets to the regular

convolution grid in the standard convolution, deformable convolution sample

features from flexible locations instead of fixed locations, allowing for the free

deformation of the sampling grid. The spatial sampling locations in deformable

convolution modules are augmented with additional offsets, learned from data, and

driven by the target task [14].

Figure 2: Convolution layer illustration. Source: [37].

A standard convolution consists of two steps: (1) Sampling using a regular

grid 𝑅 over the input feature map X; and (2) summation of sampled values weighted

by W. The grid 𝑅 defines the convolution filter by size and dilation. For example,

𝑅 = {(−1,1), (−1,0), . . . , (0,1), (1,1)} defines a 3×3 filter with dilation 1. We can

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

27

derive the standard convolution output of each position p on the output feature map

Y, according to the following formula:

𝑌(𝑝) = ∑ 𝑤𝑘

𝑘

𝑘=1

∙ 𝑥(𝑝 + 𝑝𝑘), (2)

In Zhu et al. [26], deformable convolution was defined by augmenting the

regular grid 𝑅 with 2D offsets, where given a convolutional filter of K sampling

locations, 𝑤𝑘 and 𝑝𝑘 denote the weight and pre-specified offset for the k-th

location, respectively. For example, K = 9 and 𝑝𝑘 ∈ {(−1, −1), (−1, 0), . . . , (1,

1)} defines a 3 × 3 convolutional filter of dilation 1. Let x(p) and y(p) denote

the features at location p from the input feature maps x and output feature

maps y, respectively. The modulated deformable convolution can then be

expressed as:

𝑌(𝑝) = ∑ 𝑤𝑘

𝑘

𝑘=1

∙ 𝑥(𝑝 + 𝑝𝑘 + ∆𝑝𝑘) ∙ ∆𝑚𝑘 , (3)

where ∆𝑝𝑘 and ∆𝑚𝑘 are the learnable offset and modulation scalar for the

k-th location, respectively. The modulation scalar ∆𝑚𝑘 lies in the range [0, 1], while

∆𝑝𝑘 is a real number with unconstrained range.

Figure 3 illustrates the difference between regular and deformable

convolutions: the former's sample matrix is fixed and regular, whereas the latter's

is unfixed and malleable. As a result, the receptive field used to perform dot product

with the kernel is regular for the former, while for the latter, it is irregular. It is

worth noting that the deformable convolution's sample matrix offset is chosen by

an algorithm that can better learn the geometrical properties of the objects to be

recognized.

Figure 3: Deformable convolution layer illustration. Adapted from [14].

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

28

3.1.3. Residual Networks

In a CNN, the first layers represent low-level local features, such as edges,

while deeper layers capture more complex and specific shapes [38]. The researchers

believed that deeper networks should provide better results. However, experiments

showed that the network performance did not behave as expected after adding a

certain number of layers. The backpropagated error disappearance in higher levels

of the network led some neurons to lose the ability to learn due to the lack of

updating their connections. Repeated multiplication of small numbers made the

backpropagated error infinitely small.

The researchers have experimentally proven that adding layers made the

method a complex optimization problem: when the model introduces more

parameters, it becomes more challenging to train the network [38]. They observed

that when the depth of the network increases, the precision reaches a saturation

point and then degrades quickly. Unexpectedly, this degradation was not caused by

overfitting, as adding more layers led to a more significant error even in the network

training stage [39].

In 2015, He et al. [40] proposed the Resnet, a CNN developed by Microsoft

and submitted to the Large-Scale Visual Recognition Challenge 2015 an object

classification competition. The Resnet authors also proved that (1) extremely deep

Resnets are easy to optimize, but “simple” counterpart networks (which stack

layers) exhibit a higher training error when their depth increases; (2) Resnets can

easily enjoy precision gains from increasing depth, producing results substantially

better than previous networks.

Resnet consists of stacked residual blocks linked via shortcut connections.

Feedforward neural networks with "shortcut connections" can implement the

formulation of F(x) + x. (Figure 4). Connections that bypass one or more layers are

known as shortcut connections. The shortcut connections merely conduct identity

mapping; their outputs are appended to the stacked layers' outputs. Shortcut identity

links do not add any more parameters or computational complexity. Stocasthic

gradient descent can still train the complete network end-to-end [41].

Figure 4: Residual learning: a building block. Source: [41].

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

29

3.1.4. Feature Pyramid Networks

FPN is designed to improve the detection of multiscale objects by fusing the

output of each layer of the backbone network in a top-to-down manner. It takes a

single-scale image of arbitrary size as input and outputs proportionally sized feature

maps at multiple levels in a fully convolutional fashion. Features are computed on

each image scale independently, enabling a model to detect objects across an

extensive range of scales. This process is independent of the backbone

convolutional architectures [16-17, 19].

FPN combines the upper layer (used to acquire low-resolution but powerful

semantical features) and the lower layer (used to acquire high-resolution but weak

semantical features) through lateral connections to improve feature extraction

capability. Specifically, the feature pyramid architecture is composed of five

feature maps denoted as {P2, P3, P4, P5, P6}, among which P2, P3, P4, and P5 are

calculated by feature maps {C2, C3, C4, C5} with the lateral connection,

respectively, and the max pooling operation of P5 generates P6 [8, 15].

The overall network framework consists of a bottom-up pathway, a top-

down pathway, and lateral connections, as shown in Figure 5. The Bottom-up

pathway is the feed-forward computation of the backbone ConvNet, which

computes a feature hierarchy consisting of feature maps at several scales with a

scaling step of 2 [18]. On the top-down pathway, the lateral connections merge

feature maps by element-wise addition from the bottom-up pathway. The coarser-

resolution feature maps are upsampled by a factor of 2 (using nearest neighbor

upsampling for simplicity). Convolutions 1x1 and 3x3 are applied in the ways.

Figure 5: Schematic of the architecture from feature pyramid network (FPN).

Adapted from: [14].

3.1.5. Faster R-CNN

We can define a spatial location on computational vision as the smallest

rectangle aligned to the axis that entirely involves an object. A good object detector

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

30

must be able to identify multiples and partially occluded objects in arbitrary scenes,

be invariable to the scale, point of view, and orientation of the object, and on several

locations. Object detection is a type of supervised learning problem that consists of

predicting the class of one or more objects in the same image and delimiting the

fairer bounding box that encompasses them.

The object detection task has been by an increasing amount of attraction due

to three main fronts: application, data, and technological developments [10, 12, 32,

52–54]. Literature divides the ConvNets based approaches to object detection into

two categories: two-stage detection framework and one-stage detection framework

[10, 12, 32, 54]. The two-stage detection framework is slower in more accuracy,

while a phase is faster but less accurate [9, 11, 54].

Faster R-CNN is currently one of the usual representative methods in object

detection [15]. This object detection framework is the first two-stage end-to-end

unified deep learning detector that enables nearly cost-free region proposals. It

shares convolutional features maps unifying Region Proposal Network (RPN) and

Fast R-CNN algorithms, generating marginal cost for computing region proposals

[45].

This framework can be divided into four main parts: the backbone, Region

Proposal Network (RPN), Region of Interest (ROI) Pooling layer, and a Fully-

Connected (FC) layer (Figure 6). The backbone serves as a feature extractor,

extracting the semantic features from the input image and producing a feature map

for the subsequent steps [15]. The backbone can be any convolutional network, and

it processes the whole image with several convolutional and max-pooling layers to

produce a convolutional feature map.

Figure 6: Schematic of the architecture from Faster R-CNN.

 The goal of RPN is to produce possible object regions called object

proposals. RPN uses structs called anchors. Anchors are references boxes for

encoding proposals. Let (x,y,w,h) and (𝑑𝑥,𝑑𝑦, 𝑑𝑤, 𝑑ℎ) be the bounding boxes of a

proposal and an anchor, respectively. A proposal is parameterized as (𝑑𝑥,

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

31

𝑑𝑦, 𝑑𝑤, 𝑑ℎ) relative to an anchor, where (𝑑𝑥, 𝑑𝑦) is the displacement vector from

anchor center (𝑥𝑎,𝑦𝑎) to proposal center (x,y) divided by anchor width and weight,

respectively. The proposal's scaling factors in width and height concerning the

anchors are (𝑑𝑥, 𝑑𝑦). The Figure 7 illustrates this relative encoding of proposal.

RPN generates proposals via anchors by placing nine anchors centered at

each point of the convolutional feature map. Three aspect ratios and three scales are

used to recognize objects with multiple dimensions and add scaling variance,

resulting in these nine anchors. The RPN predicts one proposal concerning each

anchor based on 6 parameters to describe it: (𝑑𝑥,𝑑𝑦, 𝑑𝑤, 𝑑ℎ) relative to bounding

box parameters and (𝑑𝑜𝑏𝑗,𝑑𝑏𝑔) relative to object/background class probabilities.

Thus, nine proposals relative to these nine anchors centered at each point are

predicted by giving 9x4-d relative box parameters and 9x2-d class probabilities

(Figure 8).

Figure 7: Relative encoding of the proposal.

Figure 8: Illustration of RPN anchors parametrizations.

After explaining the concept of anchors, we can describe the overview of

the RPN algorithm. Firstly, RPN receives as input the convolutional feature map

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

32

computed by the backbone. Then, RPN predicts nine proposals relative to 9 anchors

for all points of the convolutional feature map. Finally, it generates 36 and 18

channels for box parameters and class probabilities, respectively. The final object

proposals are generated for further processing by suppressing non-maximum

proposals.

The RPN architecture consists of three convolutional layers, as illustrated

in Figure 9. The intermediate layer converts the input convolutional feature map to

the one specifically for proposal generation. The regression layer predicts the box

parameters of all proposals. Finally, the classification layer predicts the

object/background probabilities of all proposals.

Figure 9: RPN general architecture.

The training overview for RPN is following:

• Assign a label to each anchor.

o Use Intersection over Union (IoU) for measuring box overlap to

define the labels.

o Positive anchors have IoU > 0.7 with any object.

o Negative anchors have IoU < 0.3 for all ground-truth boxes.

• Form a mini batch consisting of 256 anchors.

o 128 positive (object) anchors.

o 128 negative (background) anchors.

• Minimize the defined loss function defined for Equation 4.

o Optimization: stochastic gradient descent

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

33

 𝐿(𝑑(𝑖), 𝑝(𝑖)) = ∑𝑝 (𝑜𝑏𝑗)
𝑖

𝑖

𝑥 𝐿𝑟𝑒𝑔(𝑑(𝑖), 𝑑 (𝑖)) + ∑𝐿𝑐𝑙𝑠

𝑖

(𝑝(𝑖), 𝑝 (𝑖)) (4)

where 𝑑 (𝑖) is the box parameters of the ground-truth box associated with 𝑖𝑡ℎ

anchor, 𝑝 (𝑖) is the ground-truth class probability of the 𝑖𝑡ℎ anchor, (𝑑(𝑖), 𝑝(𝑖)) is the

proposal parameters predicted by RPN via anchors, and 𝐿(.) evaluates the loss of

classification and regression of the parameters.

After generating object proposals, we will go through how to use ROI

pooling to extract the feature map of each proposal, which consists of three steps:

ROI clipping, ROI division, and max pooling. The convolutional feature map is

cropped according to the object proposal box using ROI clipping. The ROI feature

clip is then divided into 7x7 grids using ROI division. To create a proposed feature

map, max pooling is done to each channel of the grid. We acquire the 7x7x512

convolutional feature map for an item proposal, which is flattened to a feature

vector.

Finally, like RPN, the FC layer has the objective of the predict regression

offset and class probabilities for every proposal. It reduces feature dimensions to

4096 by using two hidden layers. Then, there are two wholly linked branches for

estimating regression offset and class probabilities. The regression branch predicts

N+1 classes target boxes, each for a class label, including a background label. For

example, if the number of classes is 2, the regression branch predicts 12 regression

offsets: 8 for the classes and 4 for the background. The classification branch

predicts the class probabilities for all class labels.

The training overview for Faster R-CNN is following:

• Select an image with its labels from the dataset

• Flow through Faster R-CNN network to obtain:

o RPN: regression offset map and classification map (background or

foreground)

o FC Layer: object regression offset and class probabilities

• Computer prediction loss for updating parameters

o RPN: convolutional kernels using Equation 4

o FC layer: weight matrices using Equation 5

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

34

 𝐿(𝑑(𝑖), 𝑝(𝑖)) = ∑(1.0 − 𝑝 (𝑏𝑔)
(𝑖))

𝑖

𝑥 𝐿𝑟𝑒𝑔(𝑑(𝑖), 𝑑 (𝑖))

+ ∑𝐿𝑐𝑙𝑠

𝑖

(𝑝(𝑖), 𝑝 (𝑖))
(5)

3.1.6. Knowledge Transfer

The literature shows that transferring knowledge obtained by one network

to another improves the performance of the latter. This improvement happens if the

networks are designed and trained for different tasks. This knowledge transfer

consists of getting the weights of neurons adjusted for a previous task and training

on top of them to adjust the network to another task. Yosinski et al. [42] presents

that even if this transfer occurs between training for different tasks, the results are

still better than using random weights.

In addition, to further improve the results, these weights can be readjusted

in the training of the new task. These new settings allow the network to better adapt

to the new input patterns. Two strategies were developed to transfer knowledge: (a)

fine-tuning and (b) transfer learning. The first strategy consists of using the

parameters of the pre-trained network as initial parameters for training with a new

dataset rather than using random parameters. The second strategy consists of

freezing a defined number of layers of the network in the training process.

Deciding which techniques to transfer knowledge depends primarily on the

difference between the nature of the pre-training data and the nature of the objective

task data or the goal task. For example, transfer learning may be a good idea when

transferring the style from one image to another image [46]. However, if the target

dataset is small and the number of parameters is huge, fine-tuning the whole

network may result in overfitting [32, 52]. Alternatively, the last few layers of the

deep network can be fine-tuned while freezing the parameters of the remaining

initial layers to their pre-trained values [32, 57, 58].

The literature encouraged us to use knowledge transfer to initialize the

network weights. For example, Akçay et al. [49], in their task of detecting firearms

in X-ray images, freezes the first layers and fine-tunes in the other layers of an

AlexNet based network pre-trained with natural objects and achieved superior

results to previous work. The experiments of Tajbakhsh et al. [48] considered

several medical imaging applications and segmentation from three imaging

specialties (radiology, cardiology, and gastroenterology). The authors assessed the

performance of deep CNNs trained from scratch to CNNs that had been fine-tuned

layer by layer and have proven that fine-tuning in a deep network is equal to or

greater than training a network from scratch with images of the exact nature.

The latter brings us greater motivation since the difference between medical

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

35

images and natural objects is proportional to our dataset with scanned documents

and natural objects. Finally, these bibliographies also show us no definitive rule on

what layers should be used in transfer learning or fine-tuning, even though it

provides intuition.

3.2. Deep Explainability

Researchers and model developers have a strong understanding of deep

learning techniques and a well-developed intuition surrounding model building.

Their knowledge expedites key decisions in identifying the which types of models

perform best on which types of data. These individuals wield mastery over models,

e.g., knowing how to vary hyperparameters in the right fashion to achieve better

performance. Their expertise helps them make quick judgments about which sorts

of models work well with various types of data. These people have a knowledge of

models, for example, understanding how to modify hyperparameters in the proper

way to improve performance.

However, the internal complexity and nonlinear structure of deep neural

networks do the underlying decision-making processes for why these models are

achieving such performance are challenging and sometimes mystifying to interpret

[50]. It makes them opaque and black box models with an accuracy and

interpretability tradeoff, i.e., more performing models are less interpretable [51].

Due deep networks has a black-box nature, researchers are developing methods

focused into “open them” to produce better explanations and “see through the

black-box” using phrases such as “opening and peering through the black-box”,

“transparency,” and “interpretable neural networks” [50].

Because the underlying functioning of the deep networks is not evident, it

becomes difficult to justify the outcomes of such models. It is necessary to bring in

the explainable AI techniques to understand and explain such methods working and

processes [35, 36]. As deep learning spreads across domains, it is of paramount

importance that we equip users of deep learning with tools for understanding when

a model works correctly, when it fails, and ultimately how to improve its

performance [50].

In general, systems are interpretable if humans understand and interpret

their working mechanism and decision-making process by asking questions like

why the system made a particular prediction? Why answer the interpretability

aspect, and how justifies how the system came up to a specific decision answer the

explainability part. ‘‘Interpretability is the degree to which a human can understand

the cause of a decision and can consistently predict the model’s results’’. Deep

neural nets lack interpretability [35, 37].

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

36

Unfortunately, there is no universally formalized and agreed upon definition

for explainability and interpretability in deep learning, which makes classifying and

qualifying interpretations and explanations troublesome [50]. However, the

literature often uses the keywords interpretability and explainability referring to

similar concepts [24-25, 34]. Some works consider them to be concepts pointing in

the same directions and as being interchangeable [33, 36]. For these reasons and for

the sake of simplification, the minor variations between those terminologies are not

highlighted in this study. We consider interpretability to be the foundation of

explainability, and we use the terms interpretability, explainability, and

understandability interchangeably.

The system’s explanation should be human interpretable and

understandable, mapping the human mental model to build trust, transparency,

reliability for success and failure, and robust. Gaining meaningful knowledge and

understanding of how and why the model arrived at a particular decision or outcome

is crucial in model explainability, making it one of the important evaluation metrics

[52].

Explainability can facilitate the understanding of various aspects of a model,

leading to insights that can be utilized by various stakeholders. Data scientists can

be benefited when debugging a model or when looking for ways to improve

performance. And, model risk analysts can challenge the model, in order to check

for robustness and approving for deployment [24]. An explainable system can make

potential failures easier to detect (with the help of domain knowledge). it can help

engineers pinpoint the root cause and provide a fix accordingly. Explainability does

not make a model more reliable or its performance better, but it is an important part

of formulation of a highly reliable system [53].

Belle & Papantonis [24] explain that through explainability developed

approaches can help contribute to the following critical concerns that arise when

deploying a product or taking decisions based on automated predictions. The

authors list the following items:

• Correctness: Are we confident all and only the variables of interest

contributed to our decision? Are we confident spurious patterns and

correlations were eliminated in our outcome?

• Robustness: Are we confident that the model is not susceptible to

minor perturbations, but if it is, is that justified for the outcome? In

the presence of a missing or noisy data, are we confident the model

does not misbehave?

• Bias: Are we aware of any data-specific biases that unfairly penalize

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

37

groups of individuals, and if yes, can we detect and correct them?

• Improvement: In what concrete way can the prediction model be

improved? What effect would additional training data or an enhanced

feature space have?

• Transferability: In what concrete way can the prediction model for

one application domain be applied to another application domain?

What properties of the data and model would have to be adapted for

this transferability?

• Human comprehensibility: Are we able to explain the model’s

algorithmic machinery to an expert? Perhaps even a lay person? Is that

a factor for deploying the model more widely?

The literature points that Explainability in deep neural nets can be

introduced in three different model training and development stages: Before, during

and after neural model training [25, 35, 38]. Explainability approaches applied on

after training stage (defined with post-hoc or post-modelling) reflects the fact that

inspect a model after the training is completed, thus they do not influence or

interfere with the training process, they only audit the resulting model to assess its

quality [24]. Methods applied in this stage are often data-driven or application-

driven and the internal workings of a model are not illustrated, but the focus is on

the intuitive presentation and exploration of model output. Machine learning visual

analytics has recently emerged as one of the most intriguing areas to make models

more explainable, trustworthy, and reliable. Visual analytics plays a vital role in

understanding the deep neural net models through several methods proposed for

dimensionality reduction, line charts, and instance-based analysis [52]. In visual

analytics explainability is provided through visual representations and feature

visualization approaches to support model explanation, interpretation, debugging,

and improvement.

One application for visual analytics methods is the suggestion of potential

directions for the model developer to explore [50]. It is essential to understand when

a given instance can fail and how it fails because thereby researchers and developers

can choose better directions to speed up solution improvement, quickly identify and

fix problems within a model or dataset to improve overall performance. Developers

can using visual analytics with tools on instance-level analysis using instances as

unit tests for deep learning models testing a handful of well-known data instances

to observe performance and acquiring insights to explains misclassified instances

[33, 39, 40].

Image features are mathematically represented as large tensors or 2D

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

38

matrices where each row may correspond to an instance and each column a feature.

The most common technique to visualize these features is performing

dimensionality reduction by projecting the features onto two or three dimensions -

would mean computing (x, y) or (x,y,z) coordinates - for every data instance. The

features dimensionality reduction can be realized using reduction technique used,

e.g., principal component analysis (PCA) or t-distributed stochastic neighbor

embedding (t-SNE)[33, 41].

Sometimes, when viewing the features of misclassified objects, they appear

deceptively like true positives in the feature space, even though the classification is

incorrect in the image space. In other circumstances, features of misclassified

objects may appear in the feature space to be different to true positives, leading to

a false negative classification. Therefore, by seeing feature spaces of all classified

objects (correctly classified and misclassified objects), developers may have a

better intuitive understanding of recognition algorithms.

This work developed an Explainability method after the model training

stage based on Visual Analytics to provide potential insights and directions in

choosing stamp types to be used in data augmentation experiments. The method is

based on instance-level analysis, in which a trained model extracts the features of

each instance, and the features are reduced using the PCA technique. The reduced

characteristics are plotted on a graph, and the failure cases are selected to be used

in our instance augmentation method to fix problems within a model or dataset to

improve overall performance.

3.3. Image Processing Operations

This section presents some techniques of image processing used in our

instance augmentation methodology.

3.3.1. Thresholding

Thresholding is one of the most basic forms of image segmentation. The key

advantages of thresholding are its simplicity and minimal processing power

requirements. It can be used to separate two regions (background and object) of an

image with highly different histograms when the image contains a histogram with

a bimodal distribution. The graphic shows a histogram with two peaks and one

valley.

The thresholding operation can be defined mathematically as follows. A

threshold value 𝑇 is defined for an input image. As a result, the image will be

divided into two groups: one with gray levels less than or equal to the threshold,

which will receive values of 0; and another with gray levels greater than or equal to

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

39

the threshold, which will receive values of 1. According to Gonzalez & Woods [59],

given an image 𝑓(𝑥, 𝑦) and the threshold 𝑇, we can obtain the thresholded image

𝑔(𝑥, 𝑦) by the Equation 6:

𝑔(𝑥, 𝑦) = {

1 𝑖𝑓 𝑓(𝑥, 𝑦) > 𝑇
0 𝑖𝑓 𝑓(𝑥, 𝑦) < 𝑇

 (6)

where pixels labeled 1 correspond to objects and pixels labeled 0 correspond to

background and T is a predefined threshold value.

3.3.2. Mathematical Morphology

Mathematical morphology is a tool used to extract image components

helpful in representing and describing the shape of a region, such as borders,

skeletons, and convex closure, through pre or post-processing, such as

morphological filtering and thinning, and pruning. Morphology is related to the

shape, and mathematical morphology describes or analyzes the shape of a digital

object, most often rasterized [60-61].

Mathematical morphology uses the geometry of small connected sets of

pixels to perform tasks useful in processing regions within images. These sets called

structuring elements, interact with the objects in the image, modifying their shapes.

Then, this technique also is used to count, or mark connected regions in images, fill

in small holes, and smooth or reduce borders.

The principles that define the nature of the transformation to which objects

are submitted when applying morphological operations are shape, dimensions of

the structuring element, and type of operation performed. In a binary image where

the background is black, the objects consist of sets of connected white pixels, and

each pixel is an element represented by its coordinates (x, y). Then, basic set theory

operations are applied between these objects, and a structuring element translates

onto the image.

The simplest morphological operations are the erosion and dilation

operations. In binary images, the dilatation operation images can be defined by

Equation 7, in which the erosion of A by B is the set of all points z so that B,

translated by z, is contained in A [59]. In other words, the erosion of A by B is then

the set of all x displacements such that A overlaps with at least one non-null

element, which A is the original image and B are called structuring element.

 𝐴 ⊝ 𝐵 = {𝑧 | (𝐵)𝑧 ⊆ 𝐴} (7)

Let �̂� be the reflection of B around its origin, followed by a translation of

this reflection into z. The dilation operation on binary images is defined by the

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

40

Equation 8, in which the dilation of A by B is the set of all displacements, z, of so

that �̂� and A overlap by at least one element [59].

 𝐴⨁𝐵 = {𝑧 | (�̂�)𝑧⋂ 𝐴 ≠ 0} (8)

The dilation operation (Equation 7) increases the volume of objects present

in the image by expanding their borders, filling gaps, or connecting objects. On the

other hand, the erosion operation (Equation 8) reduces the volume of objects, being

widely used to remove small objects or disconnect objects.

There are still other morphological operations, which consist of applying

sequences of the morphological operators of erosion and dilation. An opening is the

execution of an erosion followed by dilation using the same structuring element in

an image and is defined by Equation 9. The other operation, known as closing,

consists of an expansion sequence followed by erosion and is defined by Equation

10.

 𝐴 ∘ 𝐵 = (𝐴 ⊝ 𝐵)⨁𝐵 (9)

 𝐴 ∙ 𝐵 = (𝐴⨁𝐵) ⊝ 𝐵 (10)

3.3.3. Image Rotation

Simple methods of rotating sometimes cropped/cut sides of an image, which

leads to a half image. This work uses a method to safely rotate an image without

cropping/cutting sides of an image so that the entire image will include in rotation.

To achieve it, the method consists of the following step-by-step:

• Firstly, get the height and width of the image.

• Locate the center of the image.

• Compute the 2D rotation matrix using Equation 11 and Equation 12.

• Extract the absolute sin and cos values from the rotation matrix.

• Calculate the new height and width of the image and update the values

of the rotation matrix to ensure that there is no cropping.

• Apply the matrix rotation on the image.

The Equation 11 is defined by:

𝑀 = [

𝛼 𝛽 (1 − 𝛼)𝑐𝑥 − 𝛽𝑐𝑦

−𝛽 𝛼 𝛽𝑐𝑥 + (1 − 𝛼)𝑐𝑦
] (11)

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

41

where:

 𝛼 = 𝑠𝑐𝑎𝑙𝑒 ⋅ 𝑐𝑜𝑠𝜃
𝛽 = 𝑠𝑐𝑎𝑙𝑒 ⋅ 𝑠𝑖𝑛𝜃

 (12)

and (cx, cy) are the coordinates along which the image is rotated or the

center of image, 𝜃 is the rotation angle and 𝑠𝑐𝑎𝑙𝑒 is a scale factor to resize the image

as well.

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

4. Materials and Methods

This section presents the materials used in this research. We will explain

the details of the hardware, software, and technologies and present the dataset

used to develop our method.

4.1. Development and Experimental Setup

With the evolution and popularization of Graphics Processing Units (GPU),

they have been the leading hardware for executing deep learning-based techniques.

Following this technological trend, in this research, the following hardware

configuration was used for the experiments:

- Computer1

• Processor: Intel® Core™ 2 Extreme CPU X9500, 3.0Ghz;

• Graphics cards: Integrated to the motherboard;

• Persistent storage:1000GB, 3,5" 7200 RPM, 64MB Cache, SATA III;

• Volatile storage: 4GB RAM;

• Operational system: Windows 10 Enterprise x64.

- Computer2

• Processor: Intel(R) Xeon(R) CPU @ 2.20GHz, 3.0Ghz;

• Graphics cards: NVIDIA® Tesla P100® 16GB, NVIDIA® Tesla®

K80 12 GB, NVIDIA® Tesla® P100 12GB;

• Volatile storage: 13GB RAM;

• Operational system: Ubuntu 18.04.3 LTS.

The Computer1 was used to develop the image labeler software, dataset

building, and evaluation of the results. The Computer was used on Google

Colaboratory, more commonly referred to as “Colab”. Colab is a research project

for prototyping machine learning models on powerful hardware options such as

GPUs. It provides a serverless Jupyter notebook environment for interactive

development. Colab is free to use like other G Suite products [84]. We used Colab

to execute the network (training, evaluation, and test steps).

In Computer1, we use MATLAB [85] along with its Computer Vision

System Toolbox for the segmentation software development, dataset segmentation,

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

43

data preparation, and evaluation of the results. This toolbox provides algorithms

and applications for designing and simulating computer vision systems and image

and video processing.

In Computer2, the network was executed using the Facebook AI Research's

(FAIR) Detectron2 [86]. Detectron2 is a flexible and extensible platform

implemented in Pytorch [87] an available under the Apache 2.0 license. Detectron2

provides fast training on single or multiple GPU servers and includes high-quality

implementations of state-of-the-art object detection algorithms. PyTorch is an

open-source machine learning framework that allows researchers and practitioners

to iterate rapidly on model design and experiments. shows that PyTorch has been

one of the most widely used frameworks in academia and that its use has seen a

marked growth in its use in recent years.

4.2. Software for Annotation Process

The annotation process of the objects of interest is performed manually. A

system for 2D image labeling was developed in this work using a Matlab tool. The

software developed was used in the dataset annotation process. On the main screen

(Figure 10), the user can perform seven main actions. They are:

 Figure 10: The main screen of the software developed for dataset annotation.

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

44

• Open image: when selecting the option to open an image, the user

selects a document page in .jpg format to which he wants to segment

the objects of interest.

• Select object type: through this action, the user indicates which object

type will be segmented: stamp or signature.

• Enable Region Selection: The user will move or resize the region

selection rectangle when performing this action. The enclosed area

corresponds to the targeting area.

• Enable zoom/translation: The user will be allowed to perform scale

and translation transformations on the image when selecting this

option. This option is helpful to assist in object segmentation

accuracy.

• Save Object: When selecting this option, the coordinates of the

selected region and the selected object type are saved in json format

in a file in the same folder on the page. The file name will be the same

as the page name. If the file does not already exist, the software creates

it. If it already exists, the software adds the new data to the file. In

addition, a message indicating the saved data and file folder is

displayed to the user on a message screen.

• Perform a search of all pages that contain a specific stamp

• Make changes to annotations. Users can correct labeling or readjust

segmentation windows.

Once the stamp location is indicated, memorizing, or even typing the stamp

type is impractical due to the number of types within the dataset. A screen for

selecting the stamp type was developed, where the user visually indicates the type

of stamp annotated in a kind of image gallery. The software highlights the most

frequently annotated types to facilitate the user's visual search of the type.. In

addition, the user can compare the stamp located on the page and the type of stamp

selected in the labeling software. Figure 11 illustrates the scenario described. It is

easy to notice that some stamps are demarcated in blue and have thicker

demarcation than others. The thickest demarcation is the stamp "c3" (HEB 136).

The software has a third screen: the search screen. The primary function of

the search screen is to reuse the knowledge gained in previous moments in the base

annotation process. This screen was widely used in the process of data cleaning and

marking correction. Figure 12 illustrates the screen. In (1), the user selects which

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

45

subset of the database he wants to view. Region (2) presents the page's index, and

the total of pages containing the object searched within a database subset.

Region (3) presents the visualization window and interaction with the

selected page. Region (4) presents the category and subcategory of an object

selected by the user. Finally, regions (5) and (6) are for navigating through the pages

contained in a selected database and displaying the name of the subcategory of the

closest object searched.

Figure 11: Illustration of the most frequent stamp types highlighted in screen 2 (on

the right). The stamp segmented and the stamp selected in the gallery are shown for

visual comparison before saving the data (on the screen left).

Figure 12: Search screen illustration.

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

46

4.3. Method Proposed for Stamp Detection

4.3.1. Image Acquisition

We used documents provided by a private multinational manufacturing

company. The dataset has 33 scanned documents in PDF format that together

contain a total of 2230 pages. We divide each document and convert its pages to

image files. The final configuration chosen was 300 DPI in RGB color and jpg

format. Therefore, each page has dimensions 2438 x 3542 on portrait orientation

and 3542 x 2438 on landscape orientation, width, and height, respectively, and 24

bits depth.

Although the dataset contains structured pages, most of the pages are semi-

structured. Structured data has a regular structure and semi-structured data arises

when the source does not impose a rigid structure [61]. However, in practice,

stamps are often applied with some randomness, even in cases where there is a

specific region. Our dataset contains 1880 stamps distributed on 251 classes. Page

images usually have more than one instance of stamps (multiplicity at the instance

level). Besides, pages with more than one example contain multiple stamp types

(multiplicity at the type of level). About 8 people participated in the annotation

process using software developed in this proposal. Each person is responsible for a

different portion of the dataset, and, at end of process, 1 additional people

performed a final evaluation on all annotations.

4.3.2. Preprocessing and Splitting

Data collection and annotation procedures may generate many object

detection problems because they are stressful and error susceptible tasks. The

literature points that missing, incorrect, and duplicate values directly affect the

performance of several machine learning algorithms. Thus, data cleaning is a

necessary, labor-intensive, and time-consuming procedure [63-64].

This method follows a dataset preparation pipeline to provide detailed

inspection, cleaning, and validation of the data. This pipeline contains three main

phases and nine stages. Figure 13 illustrates the steps flowchart.

The first phase consists of class cleaning (steps (1) to (4) in Figure 13),

which aims to select duplicate and "fake classes". First, we manually cluster the

stamps from the shape and then map the codes within the clusters. Then we perform

a new clustering manually - this time from stamps checker code. Next, we remove

the annotations and classes corresponding to duplicates and fake classes identified.

These two clusters are necessary since stamps in our dataset can have, at the same

time, both the same distinct code and shape as well as specific codes and identical

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

47

shapes. It is, one stamp type is identified by both shape and code.

Figure 13: Flowchart of each main phases and its respective steps of the data

preparation.

On data cleaning (steps (5) to (6) in Figure 13), we perform the annotations

correction, which consists of adjusting the annotation bounding box, observing not

annotated stamps or classes not identifying, and removing wrong annotations. We

filter color pages, "free" of objects of interest, extreme low-quality pages, and

rotated pages or with rotated stamps (stamps with angles greater than 0 degrees).

Rotated pages are adjusted according to the complementary rotation angle (i.e., 90,

180, or 270 degrees).

The final phase (steps 8-9 in Figure 13) consists in splitting the dataset into

the training, validation, and testing sets. We designed a greedy algorithm to split

the dataset to overcome these difficulties and used it in other tasks that present

similar problems. The algorithm has three main goals. The first objective is to

maximize the number of instances in the training group since the training group

should have the most examples. The second objective is maximizing the diversity

of stamp types in the test group. We desire to observe the capacity of the proposed

method to generalize the detection of stamps for types and situations not yet seen

by the network, a scenario certainly expected in real cases. Finally, we want the

validation group to have the diversity of stamp types as close as possible to the test

group, ensuring that both groups are close concerning diversity.

However, achieving these three goals simultaneously is not a simple task,

and dividing the pages randomly is not the most suitable option given the stamps

multiplicity in type and instance per page, imbalance, and lack of data. These facts

make the process of dividing the data set into a combinatorial problem with infinite

possibilities. Our algorithm overcomes these difficulties and guarantees the three

desirable goals. Besides, we ensure that the test group covers all superficial

characteristics such as shape, size, color, similarity, location, and multiplicity. We

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

48

maintain the imbalance in the training set since one of the objectives of this study

is to observe how our method behaves, considering this complexity.

In summary, the algorithm works as follows. We first work on the pages

with more instances and different types of stamps, placing them in the test,

validation, and training groups, respectively. We keep a record of the classes

already inserted in each group, and we use intersection operation to check if any

stamp types belonging to the current page have been added or not in the groups.

Thus, we guarantee the highest number of the kinds for the two first groups, obeying

the order of priority. After filling the first two groups, we insert the remaining pages

in the training group. Our dataset splitting algorithm is present in Algorithm I.

4.3.3. Network Design

Testing network architectures is a time-consuming step. We follow a

procedure to optimize the network architecture design based on the characteristics

of the dataset used. The data characteristics refer to the qualitative property-data

resolution, diversity of examples of the same class, well-defined acquisition

protocol, occluding, noisy, and missing values/parts. In the following sections, we

present our method for qualitative analysis, which is possible to apply to any object

detection task and the projected architecture based on the proposed analysis.

4.3.3.1. Qualitative Analysis

Qualitative analysis has two steps: simple and complex features analysis. In

this step, we verify and describe the data properties and associate them with the

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

49

potential of the deep learning resources to direct the network architecture choice.

In other words, we searched the literature for the most suitable techniques to deal

with each challenging characteristic of our dataset. We propose an architecture to

contemplate all the challenge from the solutions found.

Figure 14 summarizes our proposed method, while the following sections

demonstrate its application to our dataset. The challenging characteristic of our

dataset and its respective suitable techniques are listed below:

1. Color. We consider color pages the pages without white background. We

consider color stamps those with color edges. Stamps are poor in texture,

limiting colors to their contours and/or page color. As shown in Figure 14

(1), stamps and pages can appear in any combination of shades of gray

and color. The literature shows that transfer learning handles with it [64].

2. Shape is a low-level feature almost as simple as edges. A stamp can

contain at least two of a simple shape (i.e., circle, triangle, squad), a

figure, or a string of characters (see Figure 14 (2)). We use transfer

learning by freezing the initial layers of a pre-trained CNN as a proper

low-level feature extractor. To use DCNs also handles well with it [12].

Figure 14: Method proposed for dataset analysis. The qualitative analysis step

serves as a guide for choosing network architecture.

3. Intra-class similarity. Stamps can have identical shapes but only a

similar string of characters. The shape corresponds to different roles,

while the string distinguishes between unique individuals (see Figure 14

(3)).

4. Size/scale/aspect ratio. Since the acquisition of documents does not vary

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

50

in distance, zoom, or point of view, these characteristics are invariant

between stamps of the same class. However, size can vary between

different classes of stamps, as illustrated in Figure 14 (4). Most stamp

classes occupy regions of approximately 100x100 pixels and aspect ratio

1, reaching values of approximately 360x170 pixels and aspect ratio more

than 2. Literature shows that FPN and anchor-based deep frameworks can

successfully handle objects of different sizes, scales, and aspect ratios [12,

65].

5. Location. The large diversity of page templates and the fact that people

do not always stamp in the expected field make it impractical to rely on

consistent stamp locations. A stamp can appear in any position on the

page. For example, Figure 14 (5) illustrates two pages with the same

template but stamped in different ways. Both RPN-based and

Classification/Regression-based frameworks handle location [9, 65].

6. Multiplicity. It is not known a priori which or how many pages have

stamps. When stamps occur, a priori both the amount is unknown and

which classes exist. Figure 14 (6) illustrates a multiplicity case, where two

pages with the same template present different amounts of stamps. Again,

RPN-based frameworks can adequately handle this feature [9, 65].

7. Overlap / occlusion. The literature highlights it as a recurring problem

that increases detection complexity [9, 12, 54, 65]. A stamp can be

isolated, overlapping another stamp, or overlapping other structures (i.e.,

text blocks, general text, manuscripts), as illustrated in Figure 14 (7).

DCNs handles well with it [8, 11].

8. Orientation. Peoples usually do not pay attention to orientation when

stamping a document. However, it is reasonable to expect that stamps are

not upside down, that is, at an angle between 90 and 270 degrees. Other

angles may occur, but only rarely. Figure 14 (8) illustrates rotated

examples of triangle stamps.

9. Low-quality. Image degradation in visual recognition tasks is a well-

known problem in the literature [12, 66-67]. Stamps in this condition can

have missing parts due to reduced acquisition quality, noise, or several

overlaps. These problems cause intra-dissimilarity between examples of

the same class and can lead to the miss classification. We characterize as

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

51

noise any element on an object stamp that does not belong to its body.

Figure 14 (9) illustrates cases of low-quality stamps which have

overlapping and missing parts.

4.3.3.2. Network Architecture

As a result of the analysis of the qualitative characteristics of the dataset, a

deep neural network architecture never applied to the stamp problem is proposed in

this work. Figure 15 illustrates the proposed architecture.

As opposed to using common CNNs, working with deep frameworks for

object detection brings the advantage of not working with sliding windows

manually. Therefore, firstly our network receives as input the entire image. Then, a

CNN backbone performs hierarchical features extraction. Our backbone consists of

a pre-trained Resnet model on the COCO dataset to use all benefits of knowledge

transfer (Section 3.2.6). Residual connections from Resnets are used for addressing

vanishing/exploding gradients in profound models [41].

Figure 15: Proposed network architecture designed using our qualitative analysis.

The two first modules from Resnet are freezing to address qualitative

problem 2 (shape), and the others are fine-tuned for the extractor parameters to

better adapt to the problem we propose to solve. We use deformable convolution

on the 4th module to address qualitative problems 2 and 7 (shape,

occlusion/overlapping). Then, the hierarchical features extracted from all modules

are combined using FPN to get richer semantics by building multi-scale features at

various semantic levels - and handling quality problem 4 (dimensions problems).

After the process performed by the backbone, the RPN uses the feature map

extracted from the entire image and automatically learns to propose regions and

dimensions of promising to object bounding boxes, handling with quality problems

4, 5 and 6 (dimensions, location, and multiplicity). The proposed regions are

dimensioned using ROI pooling, which solves the problem of fixed image size

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

52

requirements for the FC module. After passing them through two FC layers, the

features are fed into the sibling classification and regression branches. The

classification branch calculates the probability of a proposal belonging to the stamp

type, and the regression layer coefficients are used to improve the predicted

bounding boxes. Section 4.3.5 provides information about the experiments and the

reason for the specific configuration of the backbone used.

4.3.4. Evaluation

We evaluated the results achieved by the proposed method using several

metrics commonly employed in the literature related to stamp detection and object

detection tasks. These metrics aim to measure the performance and robustness of

the proposed architecture as satisfactory or not, in addition to helping to identify

positive and negative points for future improvements of this work in the training,

validation, and testing phases.

The metrics use the concepts of true positives (TP - stamps correctly

detected), false positives (FP – background incorrectly detected as a stamp), and

false negatives (FN – stamps not detected). It is important to note that a true

negative (TN) result does not apply in the object detection context, as there is an

infinite number of bounding boxes that should not be detected within any given

image [68].

- Score. Value in the range [0,1] obtained by the classification branch of the

network, showing the probability of an object belonging to a particular type.

- IoU. Value representing the area of overlap (intersection) between the bounding

box 𝐵𝑝 provided by the network and the ground-truth bounding box 𝐵𝑔𝑡, divided

by the union area.

𝐼𝑂𝑈 =

𝑎𝑟𝑒𝑎(𝐵𝑝 ∩ 𝐵𝑔𝑡)

𝑎𝑟𝑒𝑎(𝐵𝑝 ∪ 𝐵𝑔𝑡)
 (13)

- Precision is expressed as the number of TP divided by the total number of

predicted cases (TP and FP).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (14)

- Recall is expressed as the number of TP divided by the number of positive cases

(TP and FN)

𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (15)

- F-score is the harmonic mean of accuracy and recall

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

53

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (16)

- Average Precision (AP) is the most commonly used metric on object detection

tasks [11]. Fixed a single IOU threshold; it summarizes the precision x recall

curve obtained from analyzing different score values into a single value. The AP

is obtained by interpolating the precision at each level, taking the maximum

precision whose recall value is greater or equal than 𝑅𝑛+1 [68]. Mathematically,

we have:

 𝐴𝑃 = ∑(𝑅𝑛+1 − 𝑅𝑛)𝑃𝑖𝑛𝑡𝑒𝑟(𝑅𝑛+1)

𝑛

 (17)

where,

 𝑃𝑖𝑛𝑡𝑒𝑟(𝑅𝑛+1) = 𝑚𝑎𝑥𝑅:𝑅≥𝑅𝑛+1
𝑃(𝑅) (18)

- Average Recall (AR) is the maximum recall given a fixed number of detections

per image, averaged over all categories and IOU thresholds [68].

- AF-score is a custom metric of this work, evaluate AP and AR equally f-score

evaluate precision and recall.

4.3.5. Experiments

Hyperparameters settings control the behavior of the learning algorithm, but

they are not adapted automatically. Adjusting hyperparameters on the training set

is not desirable because the learning process always chooses the maximum possible

model capacity, resulting in overfitting. Additionally, tuning hyperparameters

model several times based on performance's model test set can quickly result in

overfitting to this set, even though the model is never directly trained on it. This

phenomenon is known as information leaks because when the hyperparameters are

choosed based on the model's performance on the evaluation set, some information

about the evaluation data leaks into the model [69].

Simple hold-out validation solves this problem, which a portion of the

training set is separated for model evaluation on the hyperparameters adjustment

process. This new division must adhere to the same guidelines as the previous one.

Thus, evaluating a model using this strategy divides the available data into three

sets: training, validation, and test. Each of the three sets must be chosen

independently: The validation set must be different from the training set to obtain

good performance in the optimization stage and, and the test set must be different

from both to obtain a reliable estimate of the valid error rate [62] . Once the model

is ready, it is evaluated one final time on the test data [69].

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

54

Supervised training was conducted using mini-batch stochastic gradient

descent (MBSGD) and standard backpropagation algorithm to determine the global

minimum. We used as regularization methods the mini-batch stochastic gradient

descent (MBSGD), batch normalization and weight decay, techniques widely

discussed in Neapolitan & Jiang [32]. We fixed the designed architecture network

for all experiments. In applying the framework, we select the default configuration

as the start point and conduct several experiments varying the parameters. The best

results were achieved using the values shown in Table 1.

The hyperparameters values are selected for testing using grid search [70],

the most well-known technique in which a set of values is selected for each

hyperparameter. In the most straightforward implementation of the grid search, all

combinations of selected values of the hyperparameters are tested to determine the

best choice [32]. For reducing the number of tests, the parameters are tested one to

one: when testing a value for a parameter, the result gets worse, the previous value

is fixed, and a new parameter is testing. We search a balance between bias

(underffiting) and variance (overffiting). The model with the optimal predictive

capability is the one that leads to the best balance between bias and variance, which

gives the smallest average training and generalization error at the same time [42–

44, 71]. We use simple hold-out validation [69].

Table 1: Main parameters tested in the experiments.

Parameters Values

Minimum size image train 1200

Minimum size image test 1200

Learning rate 0.01

Momentum 0.9

Weight decay 0.3

Freeze backbone stages 1,2

Deformed backbone stages 4

Mini-Batch 512

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

55

We control the weights update step experimenting learning rate on values

0.1, 0.01 and 0.001, values suggested in Andrew [88]. For weight decay technique,

we use the values 0.1, 0.3 and 0.5. Weight decay acts as a capacity hyperparameter:

increasing this parameters decreasing the complexity of the model leading to a

simpler model and preventing overfitting [32]. We experiment momentum values

0.9 and 0.999 for penalizes useless “sideways” oscillations (steep steps). The

literature point that this allows the use of more significant steps in the correct

direction without causing overflows or “explosions” in the lateral direction,

resulting in an accelerated learning process [32].

We used batch normalization technique to address the vanishing and

exploding gradient problems and reduce covariate shifts. In covariate shift, the

parameters change of the hidden inputs change during training from early layers to

last layers, and it causes slower convergence during training because the training

data for later layers are not stable. Bach Normalization adaptively normalizes data

even as the mean and variance change over time during training. It works by

internally maintaining an exponential moving average of the batch-wise mean and

variance of the data seen during training and allows dropout technique to be omitted

[42, 69-70]. The batch normalization layers are tested frozen, fine-tuning from pre-

trained model, and full training all of them.

The literature points that the common values used in MBSGD technique are

powers of 2 as the size of the mini-batch, because this choice often provides the

best efficiency on most hardware architectures [32]. So, we experiment values in

the range of 32 to 512. For stages using DCN and transfer learning, we experiment

with all possibilities. We experiment with the interval of 2 to 4 stages for DCN and

1 to 5 stages for transfer learning. The experiments are conducted individually, first

the transfer learning stages for finding the best freezing layers configuration. Then,

the DCN stages are tested. To conduct the experiments, firstly, using DCN would

combinatorically increase the number of tests. For each one, the stages are testing

one to one and combining them.

We use 10k epochs on all experiments rather than using early stopping

because the literature points that in this technique the iterative optimization method

is terminated early without converging to the optimal solution on the training data

[32]. Another disadvantage of the early stopping technique is that the number of

epochs is more of a parameter to be adjusted. In the first stage of our analysis, we

empirically observed that the models did not achieve significant improvements in

the results in around 10k (a large number) of epochs.

We observe AP and AR metrics to define the best network settings and

hyperparameters value using hold-out evaluation. Analyzing the experiments

evaluation process using graphics generated by Tensorboard, we observe a

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

56

significant interval of epochs for network converging and several peaks

configurations (Figure 16(a) and 16(b)).

(a)

(b)

Figure 16: Graphic produced on the Tensorboard for the AP50 metric obtained from

the application of the network on validation set. (a) Experiment shows best value

on epoch 1800. (b). Experiment shows best value on epoch 4100.

For tiebreaker criteria, we evaluate the AF-score evaluation metric, and we

choose a single model. We consider all object sizes and 100 detections per image.

We base our choices on the following points:

• The pages have stamps in several sizes.

• The same page can contain more than ten stamps.

• A minimum of 50% IOU is sufficient for the stamp detection

problem.

Then, we apply the model again on the validation group, and we evaluate

the predictions obtained using precision and recall metrics considering different

values for the score and IoU. In this stage, we choose the two best possible

configurations concerning each of the metrics.

The final evaluation for measuring the network performance is conducted

on possible fixed thresholds as default in a decision-making situation. We

experiment all combinations considering the values 0.5, 0.7 and 0.9 for score and

0.05, 0.5 and 0.7 for IoU. We selected two (score, IoU) values: one prioritizing

correct inference and one prioritizing detected stamps even with a higher false-

positive index. In the end, we apply to the test based on both the model and the

thresholds selected. The following section presents and discusses the results

obtained from the experiments.

4.4. Method Proposed for Stamp Instance Augmentation

One of the most significant drawbacks of using a state-of-the-art detection

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

57

system is the number of annotations needed to train it because finding a large

labeled dataset containing instances in a particular task is often unlikely. One of the

ways found in the literature to overcome this bias is using data augmentation

techniques to generate synthetic data to feed the training of neural networks.

However, models trained with this synthetic data have difficulty generalizing to real

data due to changing image statistics [21].

A more challenging situation is when there are too few certain classes in the

training base. In this case, data augmentation can become ineffective due to the lack

of representation of these classes. A simple way to significantly improve the data

efficiency of object detection is using an augmentation procedure that is more

object-aware, both in terms of category and shape.

Instance augmentation is a form of synthetic data generation based on data

augmentation by generating objects of interest instead of complete images. This

method has several advantages. It combines information from multiple images in

an object-aware manner by copying objects from one image and pasting them onto

another image. This method can lead to a combinatorial number of new training

data, with multiple possibilities for:

• Choices of the pair of source images from which instances are

copied, and the target image on which they are pasted;

• Choices of object instances to copy from the source image;

• Choices of where to paste the copied instances on the target image.

The large variety of options when utilizing this data augmentation method,

the large variety of options allow for lots of exploration on how to use the technique

most effectively. Instance augmentation has the potential to create challenging and

novel training data for free.

The critical insight for using instance augmentation is that state-of-the-art

detection methods-based regions, like Faster-RCNN, care more about local region-

based features for detection than the global scene layout. For example, a stamp

detector cares about the stamp's visual appearance and blending with the

background, not where the stamp occurs on the page. [22] shows that while global

consistency is essential, only ensuring patch-level realism while composing

synthetic datasets should go long to train these detectors. They use the term patch-

level realism to observe that the bounding box containing the pasted object looks

realistic to the human eye. In this section, this work proposes a instance

augmentation by only copying the exact pixels corresponding to an object instead

of all pixels in the object's bounding box to ensure the patch-level realism of the

object.

The proposed approach for generating new data using Instance

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

58

Augmentation is very simple. Instances of the classes to be augmented are manually

segmented from their original pages. Then, binary masks of the selected instances

are generated using image processing techniques thresholding and image negation.

Then instances and masks transform based on the addition of noise, rotation, or

morphological operations in some combination. Finally, the object's pixels are

pasted into the image using the binary mask as a reference. Figure 17 illustrates the

steps described here. The following section details the procedure of the proposed

method for Stamps Instance Augmentation.

4.4.1. Instance Augmentation Procedure

After applying the stamp detection method on the images of document

pages, we get all the detected stamps. We get the undetected stamps by comparing

the network responses to dataset manual annotations. Thus, the first step of the

proposed synthetic data generation procedure is to observe undetected stamp types

containing few samples in the training set. Types with few training samples are

more difficult for the network to detect due to the lack of representation.

To identify the types of stamps with few samples, the model obtained

through the stamp detection method analyzes the document pages and extracts the

characteristic maps them. Then, the regions corresponding to each stamp are

extracted, identifying those detected and those not detected through the

combination of the obtained characteristic maps and the manual markings.

Figure 17: Proposed method for Stamps Instance Augmentation.

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

59

After obtaining characteristics of the detected and undetected stamps, the

PCA [72-73] technique reduces the dimension of the characteristics to the three-

dimensional space. The reduced instances feature of all stamps are plotted to

perform a visual analysis of the stamps. Undetected stamps are identified as more

isolated in the plot, representing the most difficult stamps for the obtained model to

detect.

Once the most challenging types are selected, the generation process starts.

First, some cases of stamps from the selected types are extracted based on manual

annotations. Once segmented, noises are manually removed (structures that do not

belong to the stamp, such as table lines, parts of other stamps, and handwritten

words). This cleaning is necessary since when performing the gluing process, the

noises not removed will join with the noises already present in the region to be

glued and may mischaracterize the new stamp generated.

After extracting the stamp instances, the masks are generated using image

processing techniques such as thresholding and image negation. Then, a lottery

decides which perturbations or combinations of perturbations will be applied to

generate each new stamp. These disturbances are performed to add statistical

variability in the synthetic instances. The method generates datasets for every

possible combination of transformations, that is, all combinations involving the

addition of Gaussian noise, rotation, erosion, and dilation.

The method applies Gaussian noise with a mean of 0.1 and a variance of

0.3. The masks used for the morphological transformations were 3x3 masks, using

only one interaction on the instances. These values were established empirically by

observing the generation of several datasets visually. The rotations were established

for the angles [345, 350, 355, 5, 20, 25] and with probabilities of p = [0.05, 0.15,

0.30, 0.30, 0.15, 0.05] for each angle, respectively. This probability setting

prioritizes angles close to the object's natural angle (angle 0) since larger rotation

angles are less likely to occur in documents based on observations made in the

dataset. Figure 18 illustrates the angle draw distribution for 1000 trials.

The data generation process for each type of stamp follows the following

step-by-step:

• For each type of stamp

o For each page image

▪ Draw a stamp instance

▪ Draw the probability of transformations taking place.

If it is favorable, while it is favorable

• Apply a transformation from the list of

transformations

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

60

• Divide the chance of a new transformation

happening by 2.

• Remove the applied transformation from the

current list

Figure 18: Illustration of the distribution of the draw of angles for 1000 attempts.

Finally, the process of pasting the instances is performed. Each page is

gridded to have 12 stamps. We only use stamp-free pages to ensure full control over

data generation. The AND binary operation is applied between the instance and the

mask to extract only the stamp pixels. The method extracts a region of interest

(ROI) – (grid cell) contained in the page, and then it applies an AND binary

operation using the ROI and the negative of the mask to extract the background

pixels. Then, it adds the pixels extracted from the ROI to the pixels extracted from

the stamp. Finally, it pastes the resulting image into the cell corresponding to the

ROI. The method repeats this process until it fills the page.

4.4.2. Experiments

The results are analyzed by applying the model to the validation base and

3D visualization. The three most isolated points in the generated graph and one of

the random undetected instances were selected. More isolated points on the graph

represent the most difficult instances for the network to detect. Figure 19 illustrates

the scenario discussed. The points highlighted in yellow represent the stamp

instances selected for studies and experiments using the proposed Instance

Augmentation method.

We evaluated different scenarios, as several stamp quantities per page, page

quantities, transformation combinations, and stamp locations. Experiments were

also performed cleaning the instances, not cleaning the instances, and combining

them. The experiments were controlled, adding the generation of only one stamp

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

61

type at a time. In other words, given stamps A, B, and C, experiments are first

conducted until stamp A is successfully detected. After that, stamp B is added. This

process is repeated until the synthetic base contains all the selected stamp types.

Figure 19: 3D visualization illustrating the four instances selected (on yellow color)

for the Instance Augmentation experiments.

We observed two issues in our experiments. The first question is whether

the generated instances helped the network to detect similar instances in the

validation base and how much improvement there was in the detection. We assess

this “how much” by assessing whether the network provided a higher score. The

score represents the percentage of how much such an instance is a stamp for the

network. The second point is whether there was an improvement in the values of

the evaluation metrics used. Figure 20 illustrates the results for the AP50 metric in

the 1699 epoch based on validation for 7 experiments. Each of the 7 illustrated

experiments has different Instance Augmentation settings. Curves have been

smoothed at a rate of 50% for better visualization. The experiment with name 1

achieved the best AP50 value for this epoch.

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

5. Results

5.1. Stamp Detection

This section presents and discusses the results obtained with the proposed

method regarding the detection of stamps.

After the data acquisition, annotation, and pre-processing steps, we apply

the algorithm proposed in Section 4.3.2 to perform the dataset division. In the

training set, we use 87 types of stamps distributed on 1173 instances. In the

validation set, we use 130 types of stamps distributed on 234 instances. Finally, in

the test set, we use 251 types of stamps distributed on 473 instances of stamps. The

proportion of stamp types among sets is about 1/1.5/3. The proportion of stamp

instances among sets is about 5/1/2. In the training set, we used the number of stamp

types 3x more than the test set. Table 2 shows the final division and proportions of

the dataset.

Figure 20: Results for the AP50 metric in the 1699 epoch based on validation

for 7 experiments with several Instance Augmentation settings. The epoch is

highlighted in the chart.

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

63

Table 2: Distribution of training, validation, and test sets.

 Total Train Validation Test

Types 251 87 130 251

Instances 1880 1173 234 473

In the best benchmark, we reduce the input images to approximately three

times smaller than the original size, keep the batch normalization layers frozen, and

use convolutional deformable layers only in stage 3 of the resnet. We apply transfer

learning using the pre-trained weights on the COCO dataset in all backbone layers.

We freeze the first two stages of the backbone and fine-tune the remaining

parameters. Early stopping is not the most suitable option for stopping criteria in

our experiments. The experiments also noticeably showed that the proposed

architecture has good generalization capacity and excellent performance

concerning overfitting. The cost of training time per experiment is about six hours

using Tesla K80 graphics card and three hours using Tesla P100 graphics card.

Figure 21 illustrates the loss curves about the training base and the

validation base for six different experiments using the proposed architecture. It is

possible to observe that the loss on the validation base decays until a point and after

it stabilizes. The curvature of validation has fewer oscillations because it is

calculated over fewer frequently than the loss on the training database. This strategy

allows us to study the behavior in more epochs of training and perform a greater

number of experiments since training takes much time.

Table 3 presents the best results obtained from the validation and test sets

using COCO evaluation metrics [11] on network training time. We show the

number of classes, the number of stamps, the AP50, the AR, and the AF-score. In

general, Table 3 shows that the network achieves promisors AP50 and AR. What

explains the bias between the two measures is that the AR measure analyzes results

considering more IoU proportions than the AP50 measure. This fact is also one of

the reasons for we chose to analyze the model using the metrics precision and recall

considering fixed values of IoU and Score.

We perform this last evaluation through different combinations of

thresholds for the scores belonging to the predictions and IoU with the manual

markings, which we establish based on empirical assessments. Finally, we select

the two best thresholds (the best precision and the best recall obtained) and apply

the model, configuration, and thresholds selected on the test group.

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

64

(a) (b)

(c) (d)

(e) (f)

Figure 21: Loss curves about the training base and the validation base for six

different experiments using the proposed architecture.

Table 3: COCO evaluation metrics and AF-score achieved by the best model from

experiments. The hyperparameters values are specified in Table 1.

 Types Instances AP AR AF-score

Validation 130 234 98.4 80.9 88.8

Test 251 473 92.8 75.5 83.7

Table 4 shows the results achieve for precision and recall metrics and their

respective thresholds in which we test after the choice of the best model. We

highlight the best results for each metric. The model achieves better accuracy when

considering at least IoU 5% and Score 90%, and better recall when considering at

least IoU 5% and Score 70%. The Table shows a direct relationship between the

precision and recall metrics and the score and IoU thresholds: precision is directly

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

65

proportional to the value of the score, and the recall is inversely proportional to the

amount of the IoU. Additionally, we observe a trade-off between precision and

recall, where maximizing one of these metrics usually means decreasing the other.

The table shows that considering 5% for IoU and 70% for recall the method

achieved a more equilibrated relationship between precision and recall. These

observations are essential when analyzing the requirements for a future commercial

application.

Finally, Table 5 presents the values achieved by the network for the F-score

metric using the thresholds for Score and IoU. We highlight the two best results and

the averages obtained on the validation and test sets. The Table shows that we

consider all the thresholds we reach the average values above 95% for the metric f-

score on validation dataset. On test set, we reach 95% for the metric f-score

considering 5% of IoU and 70% of score.

Table 4: Precision and recall values achieved using several thresholds for the IOU

and score measures. We highlight the two best configurations used.

% Precisão-Recall

Group IoU/Score 50 70 90

Validation 5 95.4 – 97.0 96.6 – 96.2 99.1 – 95.3

50 95.0 – 96.6 96.1 – 95.7 99.0 – 95.0

70 95.0 – 95.2 96.0 – 95.0 99.1 – 94.0

Test 5 - 98.0 – 92.1 99.3 – 90.0

Table 5: Values achieved for f-score metric using several thresholds for the IOU

and score measures. We highlight the two best configurations used.

% F-Score

Grupo IoU/Score 50 70 90

Validation 5 96.2 96.4 97.2

50 95.8 95.9 97.0

70 95.1 96.2 96.5

Test 5 - 95.0 94.4

Table 6 shows the results achieved by best model applied in the test group

when analyzing the detected and the undetected stamps belonging to types present

in the training group. We also show detected and undetected stamps belonging to

absent types in the training group. We achieved detection of 97% of the 236 stamps

belonging to types present in the training group, and we detected 90% of the stamps

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

66

belonging to absent types in the training group. Figures 22(a) and 22(b) illustrate in

a 3D graph the distribution of test set instances presented, in numbers, in Table 6.

Figure 22(a) shows the distribution of detected stamps, and Figure 22(b) shows the

distribution of undetected stamps. Instances represented by a red circle belong to

classes absent from the training group, and instances represented by a blue square

belong to classes present in the training group.

Table 6: Results in detecting instances of test group stamps, which belong to types

present and away in the training group.

 Detected stamps

Trainning set Yes No Total %

Present 229 7 236 97%

Absent 212 23 235 94%

(a) (b)

Figure 22: Illustration in a 3D graph the distribution of test set instances. Instances

represented by a red circle belong to classes absent from the training group, and

instances represented by a blue square belong to classes present in the training

group.

Table 7 shows the same analysis as Table 6 concerning stamp types instead

of stamp instances. We detected 98% of the 87 types present in the training group.

Regarding the absent types in the training group, we detected 93% of the 152 types

present in the training group.

Table 7: Results in the detection of stamp types from the test group, and which

belong to types present and absent in the training group.

Detected stamps types

Trainning set Yes No Total %

Present 85 2 87 98

Absent 152 12 164 93

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

67

With the results illustrated in Tables 6 and 7, we conclude that our approach

can detect stamps and stamp types if they belong to the training base, even if there

are few instances. Even in stamp types never seen before by the network, our

approach achieved good generalization ability. In addition to these results, we have

conducted further experiments with recently proposed network architectures. Our

findings do not show any significant improvements in terms of the evaluated

metrics. For a detailed overview of these experiments, please refer to Appendix 2.

5.2. Instance Augmentation

Figure 23 illustrates the reduced features of the stamp instances using PCA

corresponding to the validation set and plotted on a three-dimensional graph. Blue-

colored objects represent detected instances. Yellow objects represent instances

whose types are undetected and used for synthetic data generation. In our

experiments, the synthetic data generated fed training set only. We can see that the

undetected instances are more isolated on the graph, while the detected instances

tend to be centered on a point.

Figure 23: Illustration of the reduced characteristics using PCA of detected and

undetected instances plotted on a three-dimensional graph. In blue, the instances

detected by the network. Undetected instances are red, and instances selected for

synthetic data generation experiments are yellow.

The experiments using synthetic data start after selecting the first type of

stamp. Figure 24 illustrates the type of stamp selected for the initial experiments

and the respective instance in the graph. Figures 24(a), 24(b), 24(c), and 24(d)

illustrate the results obtained. In the experiments, ten pages are generated, varying

the amount, and using clean and noisy stamps. Considering the biggest stamp and

the portrait and landscape layout of the pages, we experiment to generate 2, 6 and

12 stamps per page. Our experiments found that generating 12 instances per page

helped the network to detect the selected class. Then, setting the number of

instances per page to 12, we verified that cleaning up the instances to be pasted

helped the network to detect the selected class.

Successful setup of experiments performed with the first selected stamp type

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

68

is applied to the other stamp types. After application to all types, the method did

not obtain satisfactory results for only one of the types. New experiments using

double the number of pages (and instances) for this type showed improved results.

In other words, we generated 20 synthetically pages for the type that failed and ten

pages for the others—however, the method neither achieved success nor any

improvement in detection for a specific instance. A compelling reason for this

stamp instance is not detected because it has several missing parts (referring to digit

237). Figure 25 highlights the undetected instance in yellow and presents the new

results. Apart from this case, all stamps corresponding to the synthetically

generated types were detected.

(a)

(b)

(c)

(d)

Figure 24: (a) Location of selected stamp instance. (b) Stamp not detected after

generating two clean instances per page. (c) Stamp detected after generating 12

clean instances per page. (d) Stamp not detected after generating 12 instances, no

cleaning, per page.

We relied on the results achieved and shown in Tables 4 and 5 to evaluate

the experiments performed with Instance Augmentation. We evaluated the new

experiments using synthetic data generation considering the setting of thresholds in

which we obtained a more balanced relationship between the values of precision

and recall, that is, 5% of IoU and 70% of Score, together with the best F-score

achieved. Table 8 shows the ten best results achieved based on validation using the

new experiments' precision, recall, and f-score metrics. The table also compares the

result obtained in the test. Overall, all experiments using the proposed augmentation

method had better results.

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

69

Figure 25: Single instance not detected by the network after generating synthetic

data of selected stamps. Highlighted in yellow color the problematic stamp

instance. Highlighted in black color an example of the same type without any

problems.

Table 8: Comparison between the previous and new the results achieved for

validation and test sets using the proposed method for Instance Augmentation.

Set Experiment Precision Recall F-score

Validation

Experiment 0 (no

augmentation)
96.2 96.2 96.4

Experiment 1 98.3 98.3 98.3

Experiment 2 98.7 97.9 98.3

Experiment 3 97.5 98.7 98.1

Experiment 4 97.5 98.7 98.1

Experiment 5 97.9 97.9 97.9

Experiment 6 98.3 97.4 97.8

Experiment 7 98.3 97.4 97.8

Experiment 8 97.4 97.9 97.6

Experiment 9 97 98.3 97.6

Experiment 10 97 97.9 97.4

Test
No augmentation 98 92.1 95

augmentation 97.3 93.8 95.5

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

6. Discussion

6.1. Stamp Detection

We evaluate different situations in the test set to perform a detailed analysis

of the network's performance. We consider three different points of view, illustrated

in Figures 26, 27 e 28. The manual marking is the highlight in red and the network

marking in green. In lilac and blue colors, we highlight undetected stamps and false

positives detected by the network, respectively. Stamps with only green marking

mean 100% of IoU.

(a) Illustration of a page where the network

detects multiple stamps of different
geometric shapes, and similar types such
as the stamps heb292, heb294, and
heb294r.

(b) Illustration of a page where the

network
detects stamps with geometric
shapes,
overlays/occlusions, and low visual
quality.

(c) Illustration of a page where the network detects stamps with the presence of

overlapping and distant locations.

Figure 26: First point of view of case studies of the application of the neural network

for stamp detection, where we highlight cases of success within the context of some

simple (shape, intra-similarity, location, multiplicity) and complex

(overlap/occlusion, quality, and rotation) features in the dataset.

In Figure 26, we illustrate case studies of the application of the neural

network for stamp detection, where we highlight cases of success within the context

of some simple (Figure 26(c) - shape, intra-similarity, location, multiplicity) and

complex features in the dataset (Figures 26 (a) and (b) - overlap/occlusion, quality,

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

71

and rotation). Another particular case is the successful hexagon-shaped stamps

detection (Figure 26 (c)). Despite this stamp group having a low number of types

in the dataset, it has two similar features to the circular group: the proximity

between the shape and similar internal texts. This fact explains the success in

detecting hexagon-shaped stamps.

In our second analysis, we compare the application of the two thresholds for

Score in the test group. Figure 27 illustrates 2 cases of pages applying different

thresholds of scores. This figure presents the same conclusions obtained from Table

3. That is, when we increase the score threshold, the precision increases. However,

if we choose to be more flexible and consider stamps where the network scored

lower, we increase the recall at the cost of decreasing the precision. This can be

observed by comparing Figure 27(a) against Figure 27(c) and Figure 27(b) against

Figure 27(d).

(a)

(b)

(c)

(d)

Figure 27: Second point of view of case studies of the neural network application

for stamp detection, where we highlight divergences between the thresholds applied

in the test group. Cases (a) and (b) consider scores above 90% and cases (c) and (d)

consider scores above 70%.

In the last point of view of case studies, we observe some cases of stamp

types that our model has difficulty detecting. The first case consists of stamps that

do not have surrounding or internal geometric shapes (Figures 28(a) and Figure

28(c)), which can be easily confused with a background (example: other texts

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

72

printed on pages). The second case consists of triangular-shaped stamps. However,

stamps with the shape "triangle" have a low number of types and instances within

the dataset, which also are distributed between the three sets: training, testing, and

validation. Furthermore, there is no other stamp type in which the "triangle" shape

has a high degree of similarity for take feature sharing.

Figure 28 (c) points to some cases. This Figure highlights 3 specific

instances plotted using our Deep Explainability method using PCA (Section 4.4.1).

These 2 cases do not have examples in the training or validation set. The default

behavior we observe is that cases with few examples or low similarity with other

stamp classes tend to appear further away in the graph. Figure 28(c) also illustrates

that the highlighted cases are present as examples of undetected instances in Figures

28 (a) and (d).

(a)

(b)

 (c)

(d)

Figure 28: Second point of view of case studies of the application of the neural

network for stamp detection, where we highlight cases of types in which the

network had difficulties in detecting stamps.

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

73

Finally, we also observe cases in which our model mistook a few

manuscripts containing the string "heb" with stamps, as shown in Figure 28(b). We

believe that it occurs due to the large number of stamps that have this string

internally. Stamps containing the string "heb" are in the most stamp types within

the dataset (circle, rectangle, triangle, or square). We observe that the network has

learned not only the geometric features but also the textual patterns that belong to

stamps.

6.2. Instance Augmentation

The proposed method of generating synthetic stamp data based on instance

augmentation showed promising and satisfactory results. The most difficult types

of stamps were selected to generate data and perform the experiments. The

methodology had problems detecting only one type of stamp selected in the

experiments performed. For this case, new experiments are conducted.

Table 9 presents the Score metric in detecting each instance of the type of

stamp that the network failed in detection. The higher the score, the better the

network confidence in predicting a stamp. We evaluated the use of more pages for

generation and the influence of different combinations of transformations in the

instances. The network confidence when detecting the stamp’s instances in which

the detection failed is indicated for each experiment scenario.

The results obtained show that applying only rotation in synthetic instances

does not significantly improve the results. Best results are achieved by applying

data transformations through morphological operations. Overall, the morphological

erosion operation proved to be the most promising. Increasing the number of pages

brought significant improvements in most experiments.

The new investigations conducted did not reach the detection of the specific

instance that has missing parts. The numbering contained in the stamps are striking

characteristics, and the network is not trained using instances without the

numbering that make up the body of the stamp. This fact explains why increasing

the number of pages, or any combination of data transformations does not change

the network's trust for this instance. In a real scenario, the correct thing to do is to

consider this case as invalid since the omission of the check digit should not occur.

Another point to consider is related to the number of instances generated.

We show that it may be necessary to have a more significant number of instances

for certain types of stamps. The following factors can explain this fact. First, some

types of stamps share characteristics, such as shape or strings, which one of the

main advantages of deep networks: the sharing of features. Thus, the network may

not have difficulties detecting a new type of stamp or one with few instances if it is

like some dense base training. A small additional amount can be evaluated if data

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

74

generation is needed to improve results.

Table 9: Score in detecting each instance of the type of stamp that the network failed

in detection.

 10 pages 20 pages

Transformation/

Instance

Dilatation 11.9% 0% 95.2% 0%

Erosion 95.4% 0% 95.7% 0%

Rotation 9.0% 0% 6.3% 0%

Dilatation, Erosion 9.5% 0% 87.0% 0%

Dilatation, Rotation 5.2% 0% 75.2% 0%

Erosion, Rotation 52.8% 0% 44.4% 0%

Dilatation, Erosion, Rotation 27.5% 0% 97.8% 0%

However, as shown in Table 9, cases may require a more considerable

amount of synthetically generated data, as it belongs to a type of stamp that

configures itself as an outlier: there is no shape to share, and the digits can be easily

confused with typed texts. Another case that would require a more significant

number of generated instances is the stamp that presents a triangular shape in Figure

28 (a). This type does not have any example in the training base or other similar

classes, so it was not possible to perform experiments with this specific type.

Therefore, the number of instances generated by type must account for prior

knowledge of the dataset, considering characteristics such as the number of groups

and instances that share certain features and the realization and evaluation

experiments. The generation must have a balanced character since a generation

tending to infinity can cause the data to be unbalanced concerning certain types of

stamps, leading the learning to a bias about the majority type.

Table 8 presents the new results obtained for the validation and test groups

after applying the proposed data augmentation method. The Table shows that

overall, the network obtained improvements with greater emphasis on the

validation group. This result is expected for several reasons. First, the experiments

analyze the results obtained using the validation group. Although we hit these same

types in the test group, we cannot guarantee that other types of stamps will not be

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

75

harmed concerning the selected training period. The ideal scenario is to generate

synthetic data balancing the distribution of all types of stamps.

Another justification is that the types of stamps for generating synthetic data

were selected based on our knowledge of the validation basis. This makes it

possible to target the network better to hit the types contained in the validation base.

However, it is still very hard to successfully detect types of stamps in the test base

that are not contained in either the validation set or the training set by generating

synthetics. However, this work shows the feasibility of generating synthetic

instances for the types of stamps in which the network fails to detect in controlled

environments. The method even allows commercial applications to detect stamps

in documents with types of standardized stamps.

6.3. Comparison with Related Works

In this section, it is presented a comparison of the results of this work with

other related works. These are shown in Table 10, that presents information about

the databases used by other researchers and the performance metrics about their

methods.

It is difficult to compare the works due to the variability in the databases

used, the number of classes, distribution of instances by classes, and metrics used.

However, we can observe that our work has several highlights concerning

related works. First, we provide information about the number of types present in

our dataset. Our dataset comprises a quantity of types much higher than the number

of types in the related works that provide this information. This shows how difficult

our task is. We use a reasonable number of instances compared to the other works.

However, our work has a much lower instance/class ratio, another point that shows

our task's difficulty.

We build our database from documents that leading with information,

acquisition process, and distributions from a world real business scenario. Overall,

even when looking at more metrics we achieved superior values. Finally, we are

the only work that provided a method for dataset augmentation based on Instance

Augmentation.

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

76

 Table 10: Precision and recall values achieved after applying the data

augmentation proposed method.

Authors Object Types Instances AP50 Precision Recall Acc.

[4] Stamp 12 127 92

[3] Stamp 19 530 100 20

[1] Stamp 400 84 83

[74] Stamp 22.54 97.61

[2] Stamp 89.6

[27] Stamp 89.2

[75] Stamp 918 81 97

[28] Logo 32 6810 65.8

[29] Logo 32 3940 66.35

[30] Logo 32 2240 66.9 92.8 96.5

Ours Stamp 251 1878 92.8 98 92.1

Ours

(augmentation)
Stamp 251 1878 94.3 97.3 93.8

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

7. Conclusion

This work presented a computational method capable of fully automating

the stamps detection in scanned documents. First, we described a detailed procedure

for the exploratory dataset analysis. Second, we proposed an innovative greedy

strategy to generate training data that considers issues with dataset imbalance. We

presented the successful application of transfer learning and fine-tuning techniques

using a pre-trained deep network over a complex real-world dataset. The results

demonstrate the importance of dataset analysis to guide the choice of object

detection framework and the data splitting strategy proposed in this work.

The neural network could generalize knowledge to up to 3x more classes

than those present during training through our method. The algorithm achieved up

to 99% precision, 94% recall, and 95.0% average f-score in the final test procedure.

We can conclude that the developed solution can successfully improve the

efficiency and accuracy of an otherwise manual and labor-intensive verification

process.

This work paves the way for additional research in object detection,

imbalanced datasets, and stamp recognition. Future work could apply our proposed

dataset analysis method to improve the performance of learning algorithms in other

domains. Another investigation would be to generate synthetic data using image

processing and Siamese networks to improve dataset imbalance. We also intend to

continue this research to recognize different types of stamps using one or more

networks for different classes and/or groups of classes.

This work also presents a methodology for generating synthetic stamp data

on pages based on instance augmentation. We combine morphological operations,

noise addition, and rotation operation. The method first pinpoints the most complex

cases for the trained model to detect. After analyzing and selecting the most difficult

instances, the method generates instances, pixel by pixel, through image processing

algorithms. The method is successful in detecting all selected stamp types.

New experiments were performed for the more complex stamp type to

evaluate the combinations of the transformations applied to the instances and the

increase in the number of pages in the generation. Overall, the method achieved

better results by increasing the number of pages. We note that the least essential

operation among those evaluated for synthetic data generation is the rotation

operation. A single instance was not detected. However, due to the instance has

uncharacterized, the ideal is it be considered invalid and disregarded in future

experiments. The final evaluation showed that the method works, and instances

should be generated in adequate quantities for the type of stamp chosen. Synthetic

instances must conform to the selected stamp type.

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

References

1. B. Micenková and J. Van Beusekom, “Stamp detection in color document

images,” Proc. Int. Conf. Doc. Anal. Recognition, ICDAR, pp. 1125–1129,

2011, doi: 10.1109/ICDAR.2011.227.

2. N. Sharma, R. Mandal, R. Sharma, U. Pal, and M. Blumenstein, “Signature

and logo detection using deep CNN for document image retrieval,” Proc.

Int. Conf. Front. Handwrit. Recognition, ICFHR, vol. 2018-Augus, pp.

416–422, 2018, doi: 10.1109/ICFHR-2018.2018.00079.

3. P. P. Roy, U. Pal, and J. Lladós, “Document seal detection using GHT and

character proximity graphs,” Pattern Recognit., vol. 44, no. 6, pp. 1282–

1295, 2011, doi: 10.1016/j.patcog.2010.12.004.

4. P. P. Roy, U. Pal, and J. Lladós, “Seal detection and recognition: An

approach for document indexing,” Proc. Int. Conf. Doc. Anal. Recognition,

ICDAR, pp. 101–105, 2009, doi: 10.1109/ICDAR.2009.128.

5. F. Nourbakhsh, P. B. Pati, and A. G. Ramakrishnan, “Automatic Seal

Information Reader,” pp. 1–4, 2007.

6. Y. Han, S. Ma, F. Zhang, and C. Li, “Object detection of remote sensing

airport image based on improved faster R-CNN,” J. Phys. Conf. Ser., vol.

1601, no. 3, 2020, doi: 10.1088/1742-6596/1601/3/032010.

7. Y. Cheng, N. Pu, and P. Tung, “Seal Recognition Using the Shape

Selection Algorithm,” 2006 IEEE Int. Conf. Electro/Information Technol.,

no. 1, pp. 544–547, 2006.

8. Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, “Object Detection with Deep

Learning: A Review,” pp. 1–21, 2019, [Online]. Available:

https://arxiv.org/pdf/1807.05511.pdf.

9. Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object Detection in 20 Years: A

Survey,” pp. 1–39, 2019, [Online]. Available:

http://arxiv.org/abs/1905.05055.

10. P. Soviany and R. T. Ionescu, “Frustratingly Easy Trade-off Optimization

Between Single-Stage and Two-Stage Deep Object Detectors,” Lect. Notes

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 1, pp. 366–378, 2019, doi: 10.1007/978-3-030-11018-

5_33.

11. L. Liu et al., “Deep Learning for Generic Object Detection: A Survey,” Int.

J. Comput. Vis., vol. 128, no. 2, pp. 261–318, 2020, doi: 10.1007/s11263-

019-01247-4.

12. J. Dai et al., “Deformable Convolutional Networks,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2017, pp.

764–773, doi: 10.1109/ICCV.2017.89.

13. Y. Ren, C. Zhu, and S. Xiao, “Deformable faster R-CNN with aggregating

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

79

multi-layer features for partially occluded object detection in optical remote

sensing images,” Remote Sens., vol. 10, no. 9, 2018, doi:

10.3390/rs10091470.

14. L. Deng, H. H. Chu, P. Shi, W. Wang, and X. Kong, “Region-based CNN

method with deformable modules for visually classifying concrete cracks,”

Appl. Sci., vol. 10, no. 7, p. 2528, 2020, doi: 10.3390/app10072528.

15. J. Peng, C. Bao, C. Hu, X. Wang, W. Jian, and W. Liu, “Automated

mammographic mass detection using deformable convolution and

multiscale features,” Med. Biol. Eng. Comput., vol. 58, no. 7, pp. 1405–

1417, 2020, doi: 10.1007/s11517-020-02170-4.

16. Z. Shi et al., “Detecting Organisms for Marine Video Surveillance,” in

2020 Global Oceans 2020: Singapore - U.S. Gulf Coast, 2020, pp. 1–7,

doi: 10.1109/IEEECONF38699.2020.9389458.

17. A. Körez and N. Barişçi, “Object detection with low capacity GPU systems

using improved faster R-CNN,” Appl. Sci., vol. 10, no. 1, 2019, doi:

10.3390/app10010083.

18. T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,

“Feature pyramid networks for object detection,” Proc. - 30th IEEE Conf.

Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 936–

944, 2017, doi: 10.1109/CVPR.2017.106.

19. R. Ribani and M. Marengoni, “A Survey of Transfer Learning for

Convolutional Neural Networks,” Proc. - 32nd Conf. Graph. Patterns

Images Tutorials, SIBGRAPI-T 2019, pp. 47–57, 2019, doi:

10.1109/SIBGRAPI-T.2019.00010.

20. C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data

Augmentation for Deep Learning,” J. Big Data, vol. 6, no. 1, 2019, doi:

10.1186/s40537-019-0197-0.

21. D. Dwibedi, I. Misra, and M. Hebert, “Cut, Paste and Learn: Surprisingly

Easy Synthesis for Instance Detection,” arXiv, 2017.

22. G. Ghiasi et al., “Simple copy-paste is a strong data augmentation method

for instance segmentation,” arXiv, 2020.

23. N. Xie, G. Ras, M. van Gerven, and D. Doran, “Explainable Deep

Learning: A Field Guide for the Uninitiated,” 2020, [Online]. Available:

http://arxiv.org/abs/2004.14545.

24. V. Belle and I. Papantonis, “Principles and Practice of Explainable

Machine Learning,” vol. 4, no. July, pp. 1–25, 2020, doi:

10.3389/fdata.2021.688969.

25. X. Zhu, H. Hu, S. Lin, and J. Dai, “Deformable convnets V2: More

deformable, better results,” Proc. IEEE Comput. Soc. Conf. Comput. Vis.

Pattern Recognit., vol. 2019-June, pp. 9300–9308, 2019, doi:

10.1109/CVPR.2019.00953.

26. Y. S. Chen, “Automatic identification for a Chinese seal image,” Pattern

Recognit., vol. 29, no. 11, pp. 1807–1820, 1996, doi: 10.1016/0031-

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

80

3203(96)00032-5.

27. C. Jun, Y. Suhua, and J. Shaofeng, “Automatic classification and

recognition of complex documents based on Faster RCNN,” 2019 14th

IEEE Int. Conf. Electron. Meas. Instruments, ICEMI 2019, pp. 573–577,

2019, doi: 10.1109/ICEMI46757.2019.9101847.

28. K. Palecek, “Deep learning for logo detection,” 2019 42nd Int. Conf.

Telecommun. Signal Process. TSP 2019, pp. 609–612, 2019, doi:

10.1109/TSP.2019.8769038.

29. J. Song and H. Kurniawati, “Exploiting trademark databases for robotic

object fetching,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 2019-May, pp.

4946–4952, 2019, doi: 10.1109/ICRA.2019.8793829.

30. A. K. Bhunia, A. K. Bhunia, S. Ghose, A. Das, P. P. Roy, and U. Pal, “A

deep one-shot network for query-based logo retrieval,” Pattern Recognit.,

vol. 96, p. 106965, 2019, doi: 10.1016/j.patcog.2019.106965.

31. H. Guo, V. Swaminathan, and S. Mitra, “A Scalable Data Augmentation

and Training Pipeline for Logo Detection,” Proc. - 2019 IEEE Int. Symp.

Multimedia, ISM 2019, pp. 48–55, 2019, doi:

10.1109/ISM46123.2019.00016.

32. R. E. Neapolitan and X. Jiang, Neural Networks and Deep Learning.

Springer International Publishing, 2018.

33. S. Haykin, Neural Networks and Learning Machines Third Edition, 3rd ed.,

no. 114–115. Pearson, 2006.

34. C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed.

Springer, 2006.

35. A. Krizhevsky, I. Sutskever, and H. Geoffrey E., “ImageNet Classification

with Deep Convolutional Neural Networks,” Adv. Neural Inf. Process. Syst.

25, pp. 1–9, 2012, doi: 10.1109/5.726791.

36. B. Van Ginneken, A. A. A. Setio, C. Jacobs, and F. Ciompi, “Off-the-shelf

convolutional neural network features for pulmonary nodule detection in

computed tomography scans,” Proc. - Int. Symp. Biomed. Imaging, vol.

2015-July, pp. 286–289, 2015, doi: 10.1109/ISBI.2015.7163869.

37. L. G. Hafemann, “An Analysis of Deep Neural Networks for Texture

Classification,” 2014.

38. M. S. Ebrahimi and H. K. Abadi, “Study of Residual Networks for Image

Recognition,” Lect. Notes Networks Syst., vol. 284, pp. 754–763, 2018, doi:

10.1007/978-3-030-80126-7_53.

39. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern

Recognit., vol. 2016-Decem, pp. 770–778, 2016, doi:

10.1109/CVPR.2016.90.

40. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

81

and pattern recognition, 2016, pp. 770–778.

41. K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image

Recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 770–778, Accessed: Aug. 07, 2019.

[Online]. Available: http://image-net.org/challenges/LSVRC/2015/.

42. J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are

features in deep neural networks?,” in Advances in Neural Information

Processing Systems 25, 2014, pp. 3320--3328, Accessed: Jun. 21, 2018.

[Online]. Available: https://arxiv.org/pdf/1411.1792.pdf.

43. K. B. Ahmed, L. O. Hall, D. B. Goldgof, R. Liu, and R. A. Gatenby, “Fine-

tuning convolutional deep features for MRI based brain tumor

classification,” no. March 2017, p. 101342E, 2017, doi:

10.1117/12.2253982.

44. L. Jiao et al., “A survey of deep learning-based object detection,” IEEE

Access, vol. 7, pp. 128837–128868, 2019, doi:

10.1109/ACCESS.2019.2939201.

45. S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017, doi:

10.1109/TPAMI.2016.2577031.

46. Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, and M. Song, “Neural Style

Transfer: A Review,” IEEE Trans. Vis. Comput. Graph., vol. 26, no. 11,

pp. 3365–3385, 2020, doi: 10.1109/TVCG.2019.2921336.

47. H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and S. Carlsson,

“Factors of Transferability for a Generic ConvNet Representation,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 38, no. 9, pp. 1790–1802, 2016,

doi: 10.1109/TPAMI.2015.2500224.

48. N. Tajbakhsh et al., “Convolutional Neural Networks for Medical Image

Analysis: Full Training or Fine Tuning?,” IEEE Trans. Med. Imaging, vol.

35, no. 5, pp. 1299–1312, 2016, doi: 10.1109/TMI.2016.2535302.

49. S. Akçay; M. E. Kundegorski; M Devereux; T. P. Breckon, “Transfer

learning using convolutional neural networks for object classification

within X-ray baggage security imagery,” in IEEE International Conference

on Image Processing (ICIP), 2016, pp. 1057–1061.

50. F. Hohman, M. Kahng, R. Pienta, and D. H. Chau, “Visual Analytics in

Deep Learning: An Interrogative Survey for the Next Frontiers,” IEEE

Trans. Vis. Comput. Graph., vol. 25, no. 8, pp. 2674–2693, 2019, doi:

10.1109/TVCG.2018.2843369.

51. E. Tjoa and C. Guan, “A Survey on Explainable Artificial Intelligence

(XAI): Toward Medical XAI,” IEEE Trans. Neural Networks Learn. Syst.,

vol. 32, no. 11, pp. 4793–4813, 2021, doi: 10.1109/TNNLS.2020.3027314.

52. G. Joshi, R. Walambe, and K. Kotecha, “A Review on Explainability in

Multimodal Deep Neural Nets,” IEEE Access, vol. 9, pp. 59800–59821,

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

82

2021, doi: 10.1109/ACCESS.2021.3070212.

53. Y. Zhang, P. Tino, A. Leonardis, and K. Tang, “A Survey on Neural

Network Interpretability,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 5,

no. 5, pp. 726–742, 2021, doi: 10.1109/TETCI.2021.3100641.

54. L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal,

“Explaining explanations: An overview of interpretability of machine

learning,” Proc. - 2018 IEEE 5th Int. Conf. Data Sci. Adv. Anal. DSAA

2018, pp. 80–89, 2019, doi: 10.1109/DSAA.2018.00018.

55. J. Yuan, C. Chen, W. Yang, M. Liu, J. Xia, and S. Liu, “A survey of visual

analytics techniques for machine learning,” Comput. Vis. Media, vol. 7, no.

1, pp. 3–36, 2021, doi: 10.1007/s41095-020-0191-7.

56. M. Kahng, P. Y. Andrews, A. Kalro, and D. H. P. Chau, “ActiVis: Visual

Exploration of Industry-Scale Deep Neural Network Models,” IEEE Trans.

Vis. Comput. Graph., vol. 24, no. 1, pp. 88–97, 2018, doi:

10.1109/TVCG.2017.2744718.

57. A. Bilal, A. Jourabloo, M. Ye, X. Liu, and L. Ren, “Do Convolutional

Neural Networks Learn Class Hierarchy?,” IEEE Trans. Vis. Comput.

Graph., vol. 24, no. 1, pp. 152–165, 2018, doi:

10.1109/TVCG.2017.2744683.

58. C. R. García-Alonso, L. M. Pérez-Naranjo, and J. C. Fernández-Caballero,

“Multiobjective evolutionary algorithms to identify highly autocorrelated

areas: The case of spatial distribution in financially compromised farms,”

Ann. Oper. Res., vol. 219, no. 1, pp. 187–202, 2014, doi: 10.1007/s10479-

011-0841-3.

59. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed.

Pearson Prentice Hall, 2010.

60. J. R. Parker, Algorithms for Image Processing and Computer Vision, 2nd

ed. Wiley Publishing, 2010.

61. A. Madani, O. Boussaid, and D. E. Zegour, “Semi-structured documents

mining: A review and comparison,” Procedia Comput. Sci., vol. 22, pp.

330–339, 2013, doi: 10.1016/j.procs.2013.09.110.

62. I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical

Machine Learning Tools and Techniques, 3rd ed. 2011.

63. D. Jared, Big data, data mining, and machine learning: value creation for

business leaders and practitioners. Wiley, 2014.

64. N. Tajbakhsh et al., “Convolutional neural networks for medical image

analysis: Full training or fine tuning?,” IEEE Trans. Med. Imaging, vol. 35,

no. 5, pp. 1299–1312, 2016.

65. K. Oksuz, B. C. Cam, S. Kalkan, and E. Akbas, “Imbalance Problems in

Object Detection: A Review,” IEEE Trans. Pattern Anal. Mach. Intell., pp.

1–1, 2020, doi: 10.1109/tpami.2020.2981890.

66. D. Prasad, “Survey of the problem of object detection in real images,” Int.

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

83

J. Image Process., no. 6, pp. 441–466, 2012, [Online]. Available:

http://www.cscjournals.org/csc/manuscript/Journals/IJIP/volume6/Issue6/IJ

IP-702.pdf.

67. J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with class

imbalance,” J. Big Data, vol. 6, no. 1, p. 54, 2019, doi: 10.1186/s40537-

019-0192-5.

68. R. Padilla, S. L. Netto, and E. A. B. Da Silva, “A Survey on Performance

Metrics for Object-Detection Algorithms,” Int. Conf. Syst. Signals, Image

Process., vol. 2020-July, pp. 237–242, 2020, doi:

10.1109/IWSSIP48289.2020.9145130.

69. F. Chollet, Deep Learning with Python, 1st ed. Manning, 2018.

70. A. Goodfellow, I. and Bengio, Y. and Courville, Deep Learning. MIT

press, 2016.

71. C. M. Bishop, Neural Networks for Pattern Recognition. OXFORD, 1995.

72. D. R. Okada and R. Blankstein, Digital Image Processing for Medical

Applications, vol. 52, no. 4. Cambridge, 2009.

73. K. Adrian and B. Gary, Computer vision in C++ with the OpencCV

Library. O’Reilly, 2014.

74. A. Alaei, P. P. Roy, and U. Pal, “Logo and seal based administrative

document image retrieval: A survey,” Comput. Sci. Rev., vol. 22, pp. 47–

63, 2016, doi: 10.1016/j.cosrev.2016.09.002.

75. P. Forczmanski, A. Smolinski, A. Nowosielski, and K. Malecki,

“Segmentation of Scanned Documents Using Deep-Learning Approach,”

pp. 360–369, 2020, doi: 10.1007/978-3-030-19738-4.

76. G. and A. L. Seber, Linear Regression Analysis, Second. Wiley Publishing,

2003.

77. G. B. Renher, A. C. and Schaalje, Linear Models in Statistics, Second., vol.

96, no. 455. Wiley, 2008.

78. A. Schneider, G. Hommel, and M. Blettner, “Linear Regression Analysis,”

Dtsch. Arztebl., vol. 107, no. 44, pp. 776–782, 2010, doi:

10.3238/arztebl.2010.0776.

79. M. A. Arbib, The Handbook of Brain Theory and Neural Networks,

Second. 2003.

80. C. Szegedy et al., “Going Deeper with Convolutions,” in Computer Vision

and Pattern Recognition (CVPR), 2015 IEEE Conference on, 2014, pp. 1–

9, doi: 10.1109/CVPR.2015.7298594.

81. H. Rezatofighi, N. Tsoi, J. Y. Gwak, A. Sadeghian, I. Reid, and S.

Savarese, “Generalized intersection over union: A metric and a loss for

bounding box regression,” arXiv, pp. 658–666, 2019.

82. X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable DETR:

Deformable Transformers for End-to-End Object Detection,” pp. 1–16,

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

84

2020, [Online]. Available: http://arxiv.org/abs/2010.04159.

83. T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss for

Dense Object Detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42,

no. 2, pp. 318–327, 2020, doi: 10.1109/TPAMI.2018.2858826.

84. Google Colaboratory, Colab, https://colab.research.google.com/, acessed in:

20/12/2020.

85. Matlab, MathWorks, https://www.mathworks.com/products/matlab.html/,

acessed in: 20/12/2020.

86. Detectron2, Facebook IA, https://github.com/facebookresearch/detectron2/,

acessed in: 20/12/2020.

87. Pytorch, Pytorch, https://pytorch.org/, acessed in: 20/12/2020.

88. Andrew Ng., Coursera Class Notes: Gradient Descent in Practice II – Learning

Rate, https://www.coursera.org/lecture/machine-learning/gradient-descent-

in-practice-ii-learning-rate-3iawu, acessed in: 20/12/2020.

89. Rajput V., R Programming: Linear Regression,

https://medium.com/aiguys/r-programming-linear-regression-15b32464737,

acessed in: 20/12/2020

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

Appendix 1

1. Supervised Training

Supervised learning algorithms are learning algorithms that learn to

associate some input with some output, given a training set of examples of x inputs

and y outputs [70]. The algorithm receives data formed by expected input and

output pairs and automatically looks for a function that maps the inputs to their

respective outputs. The search is adjusted through feedback signals resulting from

measurements that determine the distance between the current output of the

algorithm and the expected output [69].

The literature categorizes supervised learning problems mostly are

categorized into "regression" and "classification" problems [34, 35]. In a regression

problem, the algorithm seeks to predict the results on a continuous output, which

means that it is looking for a function that maps the input variables to some

continuous function. In a classification problem, the algorithm seeks to predict the

results in a discrete output. In other words, this is looking for a function that maps

input variables into discrete categories.

1.1. Linear Regression

The primary objective of regression analysis is to calculate a model that tries

to represent the underlying relationship between continuous (dependent) variables

and independent (explanatory) variables. Linear regression is a type of regression

that uses a linear function to predict this relationship [76].

The linear regression is considered parametric in nature which means that it

makes assumptions about the dataset. These assumptions are as follows:

• The dependent variables (y) and independent variables (x) have a

linear and additive relationship. The term "linear" refers to the fact

that the change in y caused by a unit change in x is constant. The

term "additive" refers to the fact that the influence of x on y is

unaffected by other variables.

• No correlation between x is permitted. Correlation between x result

in multicollinearity. When variables are correlated, the model's

ability to discern the true influence of x on y becomes extremely

challenging. For example, the size of a house in meters and feet are

correlated.

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

86

• The error terms ϵ must have constant variance. When the variance

of ϵ, monitored over different values of an independent variable (x),

is non-constant, we say that the dataset suffers from

Heteroskedasticity. The Figure 29 shows am example of dataset with

Heteroskedasticity.

• The ϵ must be uncorrelated, i.e., the error ϵt at the time t cannot be

used to determine the error ϵt+1 at the time t+1. The presence of

correlation in error terms is called Autocorrelation. Autocorrelation

drastically affects the regression coefficients and standard error

values since they are based on the assumption of uncorrelated error

terms.

• The distributions of y and ϵ must be normal.

Figure 29: Example of a dataset with Heteroskedasticity. Adapted from: [89].

Due to the presence of these assumptions, linear regression is quite

constraining. That is, a linear regression model's performance depends on the

fulfillment of these assumptions. If the dataset satisfies them, the model produces

satisfactory results. Otherwise, it struggles to achieve good results.

The literature classifies linear regression into two types: univariate or simple

linear regression and multivariate or multiple linear regression [37-38]. They will

be explained in more detail in the following sections.

1.1.1. Univariate Linear Regression

The simplest type of linear regression is univariate linear regression. As the

name univariate suggests, it is used to determine the relationship between a single

independent variable and a single dependent variable [78]. In this case, the model

that represents the relationship between these variables is a linear function.

Given a dataset of m samples, where the ith sample is composed of a single

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

87

independent variable xi and a single dependent variable yi that varies as xi does,

the univariate linear regression model is as follows:

𝛼 + 𝛽 × 𝑥𝑖 + 𝜖𝑖 (19)

where:

• Yi is the estimated value of the ith sample of the dataset. It should

be as close as possible to the real value of the dependent variable yi

• α is known as the constant term or the intercept (also is the measure

of the y-intercept value of the regression line)

• β is the coefficient term or slope of the intercept line

• 𝜖𝑖 is the error: a random component of the regression handling the

residue, i.e. the lag between the estimation and actual value of the

dependent parameter.

α and β are known as coefficients. That said, 𝑌𝑖 is estimated by two parameters:

1. The core parameter term, not random in nature, 𝛼 + 𝛽 × 𝑥𝑖.

2. The random component, 𝜖𝑖.

After hypothesizing that y is linearly related to x, the next step would be

estimating the parameters α and β. By doing this, we try to make Y the best possible

estimate of the real data y. By mentioning the “best possible” and not the “perfect”

estimate, we acknowledge that there is an error (ϵ) in this estimation.

It is important to know that error (ϵ) is an inevitable part of the prediction-

making process. No matter how powerful the algorithm we choose, there will

always remain an irreducible error. Although we can't eliminate the ϵ term, we can

still try to reduce it to the lowest.

To do estimate the best α and β, and thus reduce ϵ to a minimum, the first

step is to calculate the prediction error, i.e a measure of how different the estimated

values 𝑌𝑖 from the real values 𝑦𝑖 is. A common measure is the sum of squares of

error of the estimation Y, i.e. sum of squares of ϵ𝑖 values. The equation is as

follows:

𝐸(𝛼, 𝛽) = ∑ 𝜖𝑖
2 = ∑(𝑌𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 (20)

The prediction error E must minimized so that the estimated values Y must

be as close as possible of the real values y. This is achieved by finding the best

parameters α and βi. So how do we find the best parameters? There are several

techniques to do this, but for the means of the method of this doctoral dissertation

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

88

the optimization technique used to minimize the prediction error is the gradient

descent. The gradient descent method will be explained in the neural networks

section.

1.1.2. Multivariate Linear Regression

A dependent variable guided by a single independent variable is usually not

enough in real-world scenarios. For example, if we want to estimate the price of a

house, we won’t use a single variable like the number of rooms. There are other

factors like how old the house, its size, location, etc. For such scenarios, we have

the multivariate linear regression.

The multivariate linear regression is quite like the univariate linear

regression model, but with multiple independent variables contributing to estimate

the dependent variable. Hence, there are multiple coefficients to determine and

more complex computation due to the added variables.

The equation of multivariate linear regression is not so different from the

univariate one, but it considers more independent variables. It can be represented

by:

𝑌𝑖 = 𝛼 + 𝐵1𝑥𝑖
(1)

+ 𝐵1𝑥𝑖
(2)

+. . . +𝐵𝑛𝑥𝑛
(𝑛)

 (21)

where:

• 𝑌𝑖 is the estimate of 𝑖𝑡ℎ sample of the dependent variable y

• 𝑥𝑖𝑗 denotes the 𝑗𝑡ℎ independent variable/feature of the 𝑖𝑡ℎ sample of the

dataset

• n is the number of independent variables

Similarly, the cost function is as follows,

𝐸(𝛼, 𝐵1, . . . , 𝐵𝑛) =
1

2𝑚
 ∑(𝑦𝑖 − 𝑌𝑖)

𝑚

𝑖=1

 (22)

As we can see, the equation or the cost function is a simple generalization

of the univariate linear regression. Now the error must be minimized to find the best

estimate of Y. As explained in the section of univariate linear regression, the neural

networks section will explain in more details how this is done using gradient

descent.

1.2. Classification

The goal in classification is to take an input vector 𝑥 and assign it to one of

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

89

𝐾 discrete classes 𝐾 where 𝐾 = 1,… , 𝐶. The input space is divided into decision

regions called decision boundaries [34]. For now, we will focus on the binary

classification problem in which a single target t ∈ {0, 1} such that t = 1 represents

class 𝐶1 and t = 0 represents class 𝐶2. In other words, the classification model

predict discrete class labels using posterior probabilities that lie in the range y = (0,

1) [34]. To achieve this, we consider a generalization of the model described in

Equation 1, in which we transform the linear function of w using a nonlinear

function 𝜑(·) so that:

𝑦(𝑥) = 𝜑(𝑦(𝑥, 𝑤)) (23)

where 𝑦(𝑥) is the probability of an input 𝑥 belongs to class 𝑘 = 1.

1.3. Train, validating and test sets

The central challenge in machine learning is that we must perform well on

new, previously unseen inputs—not just those on which our model was trained. The

ability to perform well on previously unobserved inputs is called generalization

[70]. However, after just a reasonable number of epochs, machine learning models

began to overfit the present data, and their performance on never-before-seen data

started stalling (or worsening) compared to their performance on the training data.

It is the reason that training data is unable to evaluate the model.

Therefore, the desirable dataset generating method uses a probability

distribution to create the training and test data subsets. We commonly establish a

series of assumptions referred to as the i.i.d assumptions. These assumptions

include that each dataset's examples are unrelated to one another and that the train

and test sets are equally dispersed, taken from the same probability distribution

[70]. After that, the machine learning algorithm optimizes the model using training

data, and the model final is evaluated using the test data. Under this process, the

factors that determine the model’s performance are its ability to make the training

error small and make the gap between training and test error small [70].

However, the model tuning process involves optimizing additional machine

learning algorithms settings called model hyperparameters. Hyperparameters

settings control the behavior of the learning algorithm, but they are not adapted

automatically. Adjusting hyperparameters on the training set is not desirable

because the learning process always chooses the maximum possible model

capacity, resulting in overfitting. Additionally, tuning hyperparameters model

several times based on performance's model test set can quickly result in overfitting

to this set, even though the model is never directly trained on it. This phenomenon

is known as information leaks because when the hyperparameters are adjusted

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

90

based on the model's performance on the evaluation set, some information about

the evaluation data leaks into the model [69].

Simple hold-out validation solves this problem, which a portion of the

training set is separated for model evaluation on the hyperparameters adjustment

process. This new division must adhere to the same guidelines as the previous one.

Thus, evaluating a model using this strategy divides the available data into three

sets: training, validation, and test. Each of the three sets must be chosen

independently: The validation set must be different from the training set to obtain

good performance in the optimization stage and, and the test set must be different

from both to obtain a reliable estimate of the valid error rate [62]. Once the model

is ready, it is evaluated one final time on the test data [69].

1.4. Error Analysis

Model evaluation provides assessing how appropriate the model is to gain

insight into the real-world system. Therefore, system designers have to strike the

right balance between learning the training set and minimizing the difference

between training and the test errors [79]. The capacity of a model is its ability to

accommodate a wide range of functions. Models with limited capacity may struggle

to fit the training set, while models with high capacity may be overfitted by

memorizing training set features that are not useful on the test set.

Two central challenges in machine learning are underfitting and overfitting,

and we control whether a model is more likely to overfit or underfit by altering its

capacity. Underfitting occurs when the model cannot obtain a sufficiently low error

value on the training set. Overfitting occurs when the training and test errors gap is

too large [70]. The model is underfitting at the beginning of training because the

algorithm has no model fit patterns in the training data. After a certain number of

iterations, the model starts to memorize all the training data patterns, and

generalization stops improving: the model is starting to overfit [69].

Overfitting and underfitting are often understood in the trade-off between

bias and variance in machine learning. To improve the performance of the algorithm

further, we need to be able to reduce the bias while at the same time also reducing

the variance. The bias is the error caused by the model's simplifying assumptions,

whereas variance increases with the model complexity. Therefore, the model with

the optimal predictive capability is the one that leads to the best balance between

bias and variance, which gives the smallest average training and generalization

error at the same time [42–44, 71]

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

2. Artificial Neural Networks

2.1. Introduction

The human nervous system contains cells, which are referred to as neurons.

The neurons are connected to connecting regions called synapses. The strengths of

synaptic connections often change in response to external stimuli, and these

changes are how learning takes place in living organisms. Artificial networks are

models designed as abstractions of brain theory in understanding different aspects

of biological neural network learning. An artificial neural network computes a

function of the inputs by propagating the computed values from the input neurons

to the output neuron(s) and using the weights as intermediate parameters. Learning

occurs by changing the weights connecting the neurons [42-43, 79].

 The most straightforward neural network is referred to as the perceptron.

This neural network contains a single input layer and an output node. We identify

three essential elements of the neural model: (1) synapses are characterized by

weight or strength of its own; (2) linear combiner sum the input signals, weighted

by the respective synaptic strengths; (3) activation function limits the amplitude of

the output of a neuron [42-43]. Figure 30 illustrates an example of a neural model.

Figure 30: Model of an artificial neuron.

The signal 𝑥𝑗 is the input signal 𝑥 of the synapse 𝑗 connected to neuron 𝑘.

The 𝑢𝑘 value is the linear combination of each input signal multiplied by

respectively synaptic weight 𝑤𝑘𝑗. The result of the linear combination is called

potential activation. 𝜑𝑘(·) is the activation function in the neuron k, which control

the output behavior. And 𝑦𝑘 is the final output signal of the neuron. In mathematical

terms, we may describe the neuron model as:

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

92

𝑢𝑘 = ∑𝑤𝑘𝑗

𝑚

𝑗=1

𝑥𝑗 (24)

and:

 𝑦𝑘 = 𝜑𝑘(𝑢𝑘 + 𝑏𝑘) (25)

A bias 𝑏𝑘 applies the effect of increasing or lowering the potential activation

of neuron, modifying 𝑢𝑘 by an affine transformation in the manner illustrated in

Figure 28. We can observe several that Equation 21, in Linear Regression Section,

and Equation 23 are equivalents; they perform the same computation. We can

observe it also in Equations 22 and Equation 24. Artificial neurons can compute

regression or classification and choosing the appropriate activation function is

enough for it.

Figure 31: Illustration of bias modifying a potential neuron activation by an affine

transformation.

Perceptron is the simplest artificial network, which k = 1. It is worth noting

that the perceptron has two layers, even though the input layer does not do any

calculation and merely communicates the feature values. The number of layers in a

neural network does not include the input layer. Because the perceptron has just

one computational layer, it is classified as a single-layer network [32].

2.2. Activation Function

The differentiable activation functions enabled the use of the

backpropagation method for computing the gradient of the error function

concerning the weights, which enabled the use of the gradient descent algorithm to

compute the optimal weights [63]. Different choices of activation functions can be

used to simulate different types of models used in machine learning. If the target

variable to be predicted is real, then it makes sense to use the identity activation

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

93

function, and the resulting algorithm is the same as regression. If it is desirable to

predict a probability of a binary class, it makes sense to use a sigmoid function for

activating the output node so that the prediction ŷ indicates the probability that the

observed value, 𝑦, of the dependent variable is 1 [32].

The most basic activation function 𝜑𝑘(·) is the identity or linear activation

often used in the output node when the target is a real value (regression tasks). The

sigmoid activation outputs a value in (0, 1), which helps perform computations that

should be interpreted as probabilities (binary classification tasks). The relu

activation the activation is thresholded at zero, but is the activation function most

used in neurons of more complex networks because was found a greatly accelerated

time (e.g. a factor of 6) in the converge of these networks [42, 45, 70].

Taking 𝑣𝑘 = 𝑢𝑘 + 𝑏𝑘 for simplifications, the identity, sigmoid and relu

activation functions can be expressed the Equation 25, 26, and 27, respectively. The

Figures 32(a), 32(b), and 32(c) illustrate the behavior these functions.

𝜑𝑘(𝑣𝑘) = 𝑣𝑘 (26)

𝜑𝑘(𝑣𝑘) =
1

1 + 𝑒−𝑣𝑘
 (27)

𝜑𝑘(𝑣𝑘) = max (0, 𝑣𝑘) (28)

(a)

(b)

(c)

Figure 32: (a) Identity activation function. (b) Sigmoid activation function. (c) Relu

activation function.

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

94

2.3. Loss Function

Regression and classification algorithms need to adjust their params when

the input processing result is not equal to the output target value. These machine

learning algorithms calculate the difference between input and respectively

desirable output and use it for parameter adjusting to accomplish the adjusts. The

goal is to minimize the error obtained. The algorithm calculates the error through

functions called loss, error, or cost function [43, 70-71].

The minimum for which the value of the error function is smallest is called

the global minimum, while other minima are called local minima [71]. The loss

function needs are continuously differentiable concerning the weight vector w, and

this should have few or no local minima and be a convex function [33]. Loss

function ability the machine algorithm to measure its performance and decide how

it evaluates its parameters. The loss function localization on artificial neural

network parameters adjusting is illustrated in Figure 33.

There are many other possible choices of error function which can also be

considered, depending on the application. For regression problems, the fundamental

goal is to model the conditional distribution of the output variables conditioned on

the input variable. Therefore, the use of a sum-of-squares error function is motived.

For classification problems, the goal is to model the posterior probabilities of class

membership conditioned on the input variables. For it, more appropriate error

functions can be considered [71].

Figure 33: (a) Identity activation function. (b) Sigmoid activation function. (c) Relu

activation function.

For example, consider a simple linear regression task with numeric outputs.

It requires a simple sum-of-squares error function for an input with prediction 𝑦

and target 𝑡. Let us take the Equation 28 in a simplified form, and we calculate it

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

95

for an entire dataset as:

𝐸 =
1

2N
 ∑(𝑦𝑛

𝑁

𝑛=1

− 𝑡𝑛)2 (29)

On binary classification problems, a standard loss function used is cross-

entropy. Cross-entropy is a quantity from the field of Information Theory that

measures the distance between probability distributions or, in this case, between the

ground-truth distribution and the predictions [69]. However, it is essential to

mention that different choices of error function arise from different assumptions

about the form of the conditional distribution [71]. The more suitable may be

chosen according to the task.

Using cross-entropy loss by an instance n, we can calculate the error as:

𝐸𝑛 = {

− log(𝑦𝑛)

− log(1 − 𝑦𝑛)

𝑖𝑓 𝑡𝑛 = 1

𝑖𝑓 𝑡𝑛 = 0
 (30)

The Figure 34(a) and 34(b) illustrate the behavior of first and second

conditions, respectively. The intuition is that when 𝑦𝑛 = 0 but 𝑡𝑛 = 1 the resulting

cost is large, and little if both are equals. The same logic is true when 𝑦𝑛 = 1 but

𝑡𝑛 = 0.

(a)

(b)

Figure 34: Cross entropy conditions. (a) 𝒕𝒏 = 𝟏. (b) 𝒕𝒏 = 𝟎.

For all samples of a dataset D, we can combine these two conditions as:

𝐸 =
1

𝑁
 [∑𝑡𝑛

𝑁

𝑖=1

log 𝑦𝑛 + (1 − 𝑡𝑛) log(1 − 𝑦𝑛)] (31)

 =

 ()

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

96

The intuition this way is that if 𝑡𝑛 = 0, only the second term of the sum

influences in the loss. If 𝑡𝑛 = 1, only the first term of the sum influences in the

loss.

2.4. Hyperparameters Tuning

One challenging and time-consuming step of designing neural networks is

defining and tuning their hyperparameters to find the optimal configuration.

Hyperparameters are settings that can be used to control the behavior of the learning

algorithm. Its values are adapted manually or by external algorithms since it is not

appropriate to learn on the training set because it is challenging to optimize [70].

Networks designers spend many times repeatedly modifying the model, train it,

evaluating validation data (not the test data, at this point), modifying it again, and

repeating until the model is as good as it can get. The process of optimizing

hyperparameters typically looks like this [69].

• Choose a set of hyperparameters;

• Build the corresponding model;

• Fit it to the training data and measure the final performance on the

validation data;

• Choose the next set of hyperparameters to try;

• Repeat;

• Eventually, measure performance on your test data.

It is essential to observe that hyperparameters should not be tuned using the

same data used for gradient descent. Instead, a portion of the data is held out as

validation data, and the model's performance is tested on the validation set with

various choices of hyperparameters. This type of approach ensures that the tuning

process does not overfit the training data set (while providing poor test data

performance)[32]. Some common hyperparameters to set are:

▪ Learning rate

It controls the weights update step. When it is small, the transient response

of the algorithm is overdamped. When employing high learning rates, a positive

feedback loop might occur in which big weights cause large gradients, which then

cause a significant update to the weights. When it exceeds a specific critical value,

the algorithm becomes unstable (i.e., it diverges) [43, 70].

Another adverse event where a high learning rate is used is the problem of

dying neurons on relu activation functions. In such a case, the pre-activation values

of the relu can jump to a range where the gradient is 0 irrespective of the input. In

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

97

other words, high learning rates can “knock out” relu units. In such cases, the relu

might not fire for any data instance. Once a neuron reaches this point, the loss

gradient concerning the weights just before the relu will always be zero. In other

words, the weights of this neuron will never be updated further during training [32].

▪ Momentum

Momentum has beneficial effects on the algorithm learning behavior,

addressing local minima and convergence speed. Local minimum can occur

because of small learning rate, small but consistent gradients, or noisy gradients,

and in the face of high curvature. The momentum term preventing the learning

process from terminating in a local minimum by moving each step based not only

on the current slope value but also on the past updates. By accumulating an

exponentially decaying moving average of past gradients, the momentum term

sometimes acts as a friction parameter, smoothing zigzagging moves [42-43, 69-

70].

Therefore, the learning process is moment-based is better because it gives

greater preference to consistent directions over multiple steps (horizontal steps) and

penalizes useless “sideways” oscillations (steep steps). This allows the use of more

significant steps in the correct direction without causing overflows or “explosions”

in the lateral direction, resulting in an accelerated learning process [32]. Equation

31 can express the weights update using gradient descent with momentum:

 𝑉𝑛 = 𝛽𝑉𝑛−1 + (1 − 𝛽)𝑑𝑤

𝑊 = 𝑊 − 𝛼𝑉𝑛
(32)

▪ Regularization

Regularization is one of the central concerns of machine learning, and it

consists of any modification we make to a learning algorithm intended to mitigate

overfitting [70]. In general, it is more desirable to use complex models (e.g., more

extensive neural networks) with regularization rather than simple models without

regularization. Weight regularization is a type of regularization that constrains on a

network's complexity by forcing its synaptic weights to take values close to zero

[43, 69]. It penalizes large (absolute) values of the parameters more than small

values [32].

This work uses a particular weight regularization called weight decay or L2

regularization. The cost added is proportional to the square of the value of the

weight coefficients (the L2 norm of the weights) [69]. The λ value is used to control

the strength of weight decay, which acts as a capacity hyperparameter. Increasing

or decreasing the value of λ controls the complexity of the model leads to a simpler

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

98

model. This parameter provides greater flexibility by providing a tunable parameter

chosen in a data-driven manner [32].

This way we can update the Equations COST by:

𝐸 =
1

𝑁
 [∑𝑡𝑛

𝑁

𝑖=1

log 𝑦𝑛 + (1 − 𝑡𝑛) log(1 − 𝑦𝑛)] + 𝜆 ∑𝑤𝑗
2

𝐷

𝑗=0

 (33)

where D is the dimensionality of network parameters, 𝑤𝑗 is the value of parameter

𝑗, and λ is the control hyperparameter of regularization. For any given weight in the

neural network, the updates are defined using gradient descent:

 𝑤𝑗 = 𝑤𝑗(1 − 𝛼𝜆) − 𝛼𝑑𝑤𝑗 (34)

2.4.1. Batch Normalization

Batch normalization is a method of adaptive reparameterization, motivated

by the difficulty of training profound models, and can be applied to any input or

hidden layer in a network. This method can address the vanishing and exploding

gradient problems and reduce covariate shifts. In covariate shift, the parameters

change of the hidden inputs change during training from early layers to last layers,

and it causes slower convergence during training because the training data for later

layers are not stable. Bach Normalization adaptively normalizes data even as the

mean and variance change over time during training. It works by internally

maintaining an exponential moving average of the batch-wise mean and variance

of the data seen during training [42, 69-70].

In batch normalization, the idea is to add additional “normalization layers”

between hidden layers that resist this type of behavior by creating features with

somewhat similar variance [32]. According to Goodfellow et al. [70], Let H be a

mini batch of activations of the layer to normalize. To normalize H, we replace it

with:

𝐻′ =

𝐻 − µ

σ
 (35)

where µ is a vector containing the mean of each unit and σ is a vector containing

the standard deviation of each unit. Within each row, the arithmetic is elementwise,

so 𝐻𝑖,𝑗 is normalized by subtracting µ𝑗 and dividing by σ𝑗. The rest of the network

then operates on 𝐻′ in the same way that the original network operated on H. At

training time,

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

99

µ =

1

m
∑𝐻𝑖 ,

𝑖

 (36)

And

σ = √𝛿 +

1

m
∑ (𝐻 − µ)𝑖

2 ,

𝑖

 (37)

where δ is a small positive value such as 10−8 imposed to avoid encountering the

undefined gradient of √𝑧 at z = 0. Crucially, we back-propagate through these

operations to compute the mean and the standard deviation and apply them to

normalize H. At test time, µ and σ may be replaced by running averages collected

during training time. This allows the model to be evaluated on a single example

without using definitions of µ and σ that depend on an entire mini batch [70].

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

Appendix 2

1. Extra Experiments

We performed new tests combining more complex architectures and

other cost functions to assess whether the latter could improve the results. We

keep the rest of the network parameters unchanged. The L2 and GIOU cost

functions did not improve the results in our experiments. Regarding the new

architectures used, we experimented with deeper architectures based on

resnet100, cascade architectures, and inceptions modules (configuring

cascade and resnexts in Table 3, respectively). The literature points out that

waterfall architectures can improve results in an object detection task by

evaluating different IoU thresholds between network predictions and manual

markings [65]. The inceptions modules [80] combines the extraction of

different resolutions from feature maps. The optimized combination of these

modules offers greater power to extract features and, at the same time, reduce

the number of parameters to be trained by the network.

We believe that the L2 cost function did not bring better results due to

the complexity of our database, especially concerning the different cases of

overlap and the variety of classes with few samples, which are configured in

outliers. According to [65], the L2 cost function is not a good choice when there

are outliers in the database. The GIOU cost function was designed for the

network to evaluate better cases in which there is no overlap between the

network predictions and the manual markings belonging to the dataset [81].

However, we did not obtain better results using this metric. Regarding the

other architectures tried, the best result obtained only 2% more than our

previous result.

Derformable Transformers [82] is an end-to-end object detector that is

efficient and fast converging. It converges on a few epochs compared to other

object detectors and uses multi-scale deformable attention modules, an

efficient mechanism for processing image feature maps. Focal loss [83] is

pointed out in the literature as an efficient cost function addressed to the

extreme foreground-background class imbalance. However, we believe that

this cost function did not show significant improvement due to RPN internally

minimizing this imbalance problem's effects [12], [56].

Table 11 shows our best result achieved without using Instance

Augmentation and the results obtained from the new experiments performed.

We compare the results on the application of the different experiments based

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

101

on validation. We evaluated the AF-score metric by combining COCO AP50 and

Recall metrics. At first, the results showed us that the new experiments did not

provide significant improvements. In our preliminary analysis performed

visually, we verified that the new experiments were not successful, almost

always related to the same classes of the previous experiments: those that do

not have examples in the training group. We will further investigate this fact

by generating similar synthetic data from original examples in future works.

 Table 11: Comparison of the results for stamps dectection using different network

architectures and cost functions from extra experiments.

 Metrics (%)

 backbone / loss Priority AP50 Recall F1

Baseline Backbone size resnet50 / L1
AP50 0.984 0.809 0.888

Recall 0.984 0.809 0.888

New

tests

ResNet50

resnet50 / L2
AP50 0.984 0.778 0.869

Recall 0.982 0.803 0.884

resnet50 / GIOU
AP50 0.977 0.769 0.861

Recall 0.973 0.799 0.877

resnet50_cascade / L1
AP50 0.983 0.788 0.875

Recall 0.975 0.822 0.892

resnet50_cascade / GIOU
AP50 0.978 0.757 0.853

Recall 0.965 0.794 0.871

resnet50_deformable

transformers / Focal

AP50 0.970 0.815 0.886

Recall 0.970 0.815 0.886

 ResNet100

resnet100 / L1
AP50 0.983 0.786 0.874

Recall 0.975 0.815 0.888

resnetx100 / L1
AP50 0.985 0.785 0.874

Recall 0.976 0.819 0.891

resnext101 / GIOU
AP50 0.986 0.791 0.878

Recall 0.808 0.966 0.880

resnetx100_cascade / L1
AP50 0.987 0.806 0.887

Recall 0.986 0.841 0.908

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA

